Section 17-1 Occurrences in outdoor air, indoor air and settled dust, and precipitation tables

These tables belong with the ITRC PFAS Tech Reg Document. They provide information about the studies used in developing the figures included in Section 6. The observed concentrations of PFAS that have been reported in the recent literature are included for outdoor air, indoor air and settled dust, and precipitation. These tables are intended to provide context to the reader and a starting point for further study. Media-specific occurrences of PFAS are constantly being added in the literature and on state, federal, and other countries' PFAS websites.

The user is encouraged to visit the ITRC PFAS web page (<u>http://pfas-1.itrcweb.org</u>) to access the current version of this file. Please see ITRC Disclaimer <u>http://pfas-1.itrcweb.org/about-itrc/#disclaimer</u>.

Reference/ Location	Summary	Concentrations (pg/m ³) unless otherwise noted
Karachi, Pakistan (Lin et al. 2022)	Air samples were collected over a 24-hr period from a heavily industrialized area in proximity to major highways, shipyards and other emissions sources, near a facility where all domestic, industrial, hospital, and commercial waste from the city is dumped and where open burning of biomass and refuse occurs. Samples were analyzed for a range of PFAS within the fraction of total suspended particles.	Reported concentrations of PFAS in total suspended particles in outdoor air were [mean (range)]: PFOS: 1.70 ($0.64 - 3.17$) FOSA: 0.36 ($0.08 - 1.72$) MeFOSA: 0.19 (ND - 1.92) EtFOSA: 0.40 (ND - 2.65) MeFOSAA: 0.06 - ND - 0.29) 6:2 FTSA: 0.56 (ND - 1.30) PFBA: 3.11 (ND - 11.4) PFHxA: 0.71 (ND - 8.33) PFOA: 2.03 ($0.85 - 8.70$) PFNA: 0.11 (ND - 0.46) PFDA: 0.51 ($0.19 - 2.11$) SPFAS: 9.73 ($4.29 - 39.0$)
Dhaka, Bangladesh (Morales- McDevitt et al. 2022)	During January-March 2020, polyethylene sheets were deployed for 28 days as passive samplers to collect 10 outdoor air and 4 water samples for analysis of a range of neutral PFAS. 8 discrete water grab samples were also collected by traditional water sampling methods and analyzed for a range of ionic PFAS.	 Reported concentrations of neutral PFAS in outdoor air samples were (range): 6:2 FTOH: <idl 71,000<="" li="" –=""> 8:2 FTAcr: <idl 8,000<="" li="" –=""> 8:2 FTOH: <idl 31,000<="" li="" –=""> 10:2 FTAcr: <idl< li=""> 10:2 FTOH: <idl 18,000<="" li="" –=""> EtFOSA: <mdl< li=""> MeFOSA: <mdl< li=""> MeFOSE: <idl< li=""> EtFOSE: <mdl< li=""> ∑PFAS: 0 – 128,000 </mdl<></idl<></mdl<></mdl<></idl></idl<></idl></idl></idl>

Table 17-1A. Observed PFAS concentrations in outdoor air¹

Reference/ Location	Summary	Concentrations (pg/m ³) unless otherwise noted			
Andøya and Birkenes,	Between 2018 and 2019, 115 sea spray aerosol samples were collected in a coastal	Reported aerosol a	concentrations of ir samples were [m	PFAS in sea spray nean (range)]:	
	of PFAS to assess their influence on	PFAS	Andøya (n=57)	Birkenes (n=58)	
(Sha et al. 2022)	atmospheric concentrations of PFAAs.	PFHxA PFHpA	0.038 (<0.004-0.285) 0.046 (<0.004-0.228)	0.009 (<0.004-0.191) 0.037 (<0.004-0.257)	
		PFOA PFNA	0.19 (<0.003-1.28) 0.16 (<0.004-0.467)	0.091 (<0.003-0.811) 0.12 (<0.004-0.555)	
		PFDA PFUnDA	0.14 (0.007-1.01) 0.043 (<0.004-0.112)	0.044 (<0.007-0.133) 0.039 (<0.004-0.242)	
		PFBS PFHxS	0.008 (<0.004-0.331) 0.004 (<0.007-0.035) 0.005 (<0.004-0.019)	0.004 (<0.007-0.028) 0.009 (<0.004-0.07)	
		PFOS	0.040 (<0.004-0.144)	0.055 (0.006-0.392)	
China, Japan,	Between July 2019 and May 2020, 35	Reported concentrations of PFAS in air			
	urban and suburban areas in China, Japan,				
(Wang S et al.	and Malaysia and analyzed for a range of		Winter	Summer	
2022)	neutral and ionic PEAS to assess the	8.2 FTO	1 0.0 - 273.8 1 2.0 - 271.8	18 3 - 981 0	
	occurrence seasonal variations sources	10:2 FTO	H 0.0 - 64.2	0.0 - 231.9	
	or d transmer at of DEAC	MeFOSA	A 0.0 – 0.0	0.0 - 0.0	
	and transport of PFAS.	EtFOSA	0.0 - 0.0	0.0 - 45.0	
		MeFOSE	0.0 - 0.0	0.0 - 0.0	
		EtFOSE	0.0 - 0.0	0.0 - 10.3	
		PFBA	3.3 - 41.5	9.1 – 297.9	
		PFPeA	0.0 - 0.0	0.0 - 12.4	
		PFHxA	0.0 - 1.2	0.0 - 6.7	
		PFHpA	0.0 - 2.8	0.1-4.4	
			0.0 - 29.0	0.2 - 19.9	
			0.0 - 1.9	0.0 - 4.5	
			0.0-0.7	0.0 - 1.0	

Reference/ Location	Summary	Concentrations (pg/m ³) unless otherwise noted			
Zhangjiakou and Shenyang	In 2017 - 2018, 52 air samples, 16 leaf samples, and 8 soil samples were collected in the area of the Three-North Shelter	Reported conc samples were	entrations of P (range):	FAS in air	
China	Forest in northern China and analyzed for	PFAS	Winter	Summer	
			0.39 - 2.79	0.21 - 3.30	
(Wang Q et	forest on the fate and transport of PEAS	PFHxA	0.10 - 1.28	<moi 1.79<="" td="" –=""></moi>	
al. 2022)	Torest on the fate and transport of PFAS.	PFHpA	0.08 - 0.71	0.06 - 1.38	
		PFOA	0.11 - 2.80	0.22 - 2.66	
		PFNA	0.08 - 2.31	0.14 - 2.07	
		PFDA	<mql-0.40< td=""><td><mql 0.65<="" td="" –=""></mql></td></mql-0.40<>	<mql 0.65<="" td="" –=""></mql>	
		PFUnDA	<mql-0.07< td=""><td><mql-0.11< td=""></mql-0.11<></td></mql-0.07<>	<mql-0.11< td=""></mql-0.11<>	
		PFBS	<mql 0.65<="" td="" –=""><td><mql 0.39<="" td="" –=""></mql></td></mql>	<mql 0.39<="" td="" –=""></mql>	
		PFHxS	<mql 0.73<="" td="" –=""><td><mql 0.56<="" td="" –=""></mql></td></mql>	<mql 0.56<="" td="" –=""></mql>	
		PFOS	0.08 - 1.18	0.04 - 1.00	
		6:2 CI-PFESA	<mql 2.75<="" td="" –=""><td>0.04 - 1.37</td></mql>	0.04 - 1.37	
		8:2 CI-PFESA	<mql 0.25<="" td="" –=""><td><mql 0.37<="" td="" –=""></mql></td></mql>	<mql 0.37<="" td="" –=""></mql>	
		6:2 FTOH	<mql 14.04<="" td="" –=""><td><mql 13.21<="" td="" –=""></mql></td></mql>	<mql 13.21<="" td="" –=""></mql>	
		8:2 FTOH	4.44 - 18.2	3.22 - 21.24	
		10:2 FTOH	<mql 9.50<="" td="" –=""><td><mql -="" 11.83<="" td=""></mql></td></mql>	<mql -="" 11.83<="" td=""></mql>	
Deception	21 rain samples and 20 air samples were	Reported PFAS	concentration	s in air were	
and	collected during the Antarctic summer of	(range):			
Livingston	2017–2018 to assess the potential for rain		0.010		
Islands,	amplification for different legacies and	 PFBS: ND - 	- 0.018		
Antarctica	emerging POPs including a range of PEAS	 PFOS: <lo< li=""> </lo<>	D – 0.0249		
/ inter celea		 PFBA: 0.00)7 – 0.53		
(Casas et al.		• PFHxA: <lod 0.083<="" td="" –=""></lod>			
2021)		 PFHpA: <l0< li=""> </l0<>	OD – 0.031		
2021)			D = 0.056		
			0.010		
		 PFNA. ND² 	- 0.018		
		 PFDA: <lo< li=""> </lo<>	D = 0.013		
		PFUnDA: 0	0.000052 – 0.00	44	
		 PFDoDA: N 	ID – 0.00057		
		PFTrDA: N	D – 0.00007		
		PFTeDA: N	D-0.0001		

Reference/ Location	Summary	Concer	ntrations	s (pg/m³) noted	unless ot	herwise
Tsukuba City, Japan (Wu et al. 2021)	2 air samples were collected at the National Institute of Advanced Industrial Science and Technology (AIST) in July 2020 to validate the performance of a novel air sampling method for the simultaneous analysis of ionic and neutral PFAS in both particulate and gaseous phases. Samples were analyzed for 48 PFAS compounds.	19 of 48 I The comp dominate represent The total was 290 a The highe were obs accounting the sum of respective and 10:2 respective The averationizable phase wat PFCAs (78)	PFAS con position ed by ne ted 98% ΣPFAS co and 690 est detec erved fo of neutra ely. Ave FTOH w ely. Age sum PFAS (Σ is 11. Th 3% of th st contri	mpounds of the sa utral PFA of the Pl on each s	were det mples wa S, which FAS prese ampling c S concent d 8:2 FTOH e, 40% an (2n-PFASs ds of 4:2, 0 (2n, 160 a bncentration the air p S was don with PFHx/ 2%).	ected. s nt. occasion rations ds, d 32% of), 6:2, 8:2 and 36, ons of article hinated by A being
Taiwan Western Straight	Simultaneous sampling of atmospheric and seawater samples was performed onboard a research vessel and from a marine	Reported were (rar	PFAS co nge):	oncentrat	tions in ai	r samples
Arctic Ocean, and Antarctic	station in the Taiwan Western Sea (July 2017), the Western Arctic Ocean	PFAS	Taiwan S	Western Sea	Western Arctic Ocean	Antarctic Ocean
Ocean (Yamazaki et	(September 2013), and the Antarctic Ocean (December 2012) and were analyzed for a range of PFAS. Air sampling		Gas phase (n=4)	Particle phase (n=4)	Gas + particle phase (n=4)	Gas + particle phase (n=11)
al. 2021)	and analysis included characterizing PFAS	PFBS	0.04-	<0.1-	0.04-	<0.06-
	in both the gas and particulate phases.	₽ЕН∿С	0.17	0.58 <0.1-	0.15	<0.62 <0.02-
		FTTAS	0.05	0.58	0.15	<0.02-
		PFOS	0.16-	0.30-	0.23-	<0.04-
			0.55	8.09	0.59	0.63
		PFDS	<0.60-	<0.03-	<0.19-	<0.02-
			<0.07	<0.27	<0.27	0.12
		PFBA	1.99-	0.03-	1.21-	0.15-
			4.51	1.57	1.65	1.62
		PFPeA	< 0.07-	<0.07-	0.58-	0.20-
		DELINA	0.91	1.19	1.07	1.19
			2.52	0.79	1.16	0.88
						0.00

Reference/ Location	Summary	Concer	ntrations	s (pg/m³) noted	unless ot	herwise
		PFHpA	0.28-	0.05-	0.31-	0.07-
		ΡΕΩΔ	0.40-	0.07	0.50	0.71
		HUA	5.05	4.46	0.83	0.46
		PFNA	0.10-	0.07-	0.59-	0.09-
			0.41	1.03	0.62	0.36
		PFDA	0.07-	0.06-	0.14-	0.13-
			0.12	0.83	0.56	0.46
		PFUnDA	0.06-	0.07-	0.62-	<0.30-
			0.17	0.67	0.93	0.66
			(n=5)			
		6:2 FTI	<0.6-1			
		8:2 FTI	3-12			
		10:2 FTI	<7-			
			<12			
		PFDol	<4-<6			
		PFBuDil	18-54			
		PFHxDil	<1-4			
		PFDODII	<4-5			
		BIFBB	<0.7-			
		1.2				
		FTOH	<0.07-			
		4.3	<7-			
		FTOH	<12			
		6:2	64-			
		FTOH	125			
		6:3	<4-<6			
		FTOH				
		8:2	89-			
		FTOH	219			
		8:3	<1-9			
		FTOH				
		10:2	14-32			
		FIOH	-15			
		IVIEFUSA	<15-			
		E+EOCA	<23			
			<2-<3			
		FTEOSE	<0.8-			
			<0.0-			
		L	· · -			

Reference/ Location	Summary	Concentrations (pg/m ³) unless otherwise noted
North Carolina, USA (Zhou et al. 2021)	Measured concentrations of 34 PFAS compounds in ambient fine particulate matter (PM _{2.5}) at 5 locations across North Carolina over a 1-year period in 2019.	The average quarterly PFAS concentrations in PM _{2.5} were (range): PFOA: <0.005-14.06 PFOS: <0.004-4.75 PFHpS: <0.008-0.20 PFDoDA: <0.005-0.12 PFHpA: <0.005-0.14 PFUnDA: <0.006-0.04
Livingston Island, Antarctica (Casas et al. 2020)	7 sea spray aerosol and 17 samples and 17 seawater and sea surface microlayer (SML) samples were collected between January and March 2018 at South Bay of Livingston Island. Samples were analyzed for a range of PFAS.	Reported concentrations of PFAS in sea spray aerosol air samples were (range): PFBS: $0.00527 - 0.0313$ PFHxS: ND - 0.00293 PFOS: $PFBA: 0.223 - 1.696PFHxA: PFHpA: 0.0209 - 0.0391PFOA: PFNA: PFDA: PFDA: PFUnDA: 0.00261 - 0.00527\SigmaPFAS: 0.348 - 1.772$

Reference/ Location	Summary	Concentrations (pg/m ³) unless otherwise noted			erwise	
Asan Lake, South Korea	4 air, 47 sediment, 48 soil, and 42 fish samples were collected in the Asan Lake	Reported [mean (ra	PFAS coi nge)]:	ncentratio	ons in air	were
(Lee et al.	area during July – October 2017 and March – May 2018 to evaluate seasonal	PFAS	Gas	s Phase	Parti	culate
2020)	and spatial variations in PFAS concentrations.	PFPeA PFHxA PFHpA PFOA PFDA PFDA PFDDA PFDoDA PFTrDA PFTrDA PFTeDA PFTeDA PFHxDA PFHxS (linear) PFHxS (linear) PFOS ∑PFAS	1.58 (I 3.06 (N 1.01 (N 37.0 (1 0.28 (N 0.29 (N 0.29 (N 0.09 (N 0.30 (N 0.30 (N 0.67 (N 0.76 (N 0.34 (N 45.4 (1	ND - 2.69) ND - 8.30) ND - 1.57) 8.2 - 71.4) ND - 1.11) ND - 1.15) ND - 0.35) ND ND ND ND ND ND ND ND - 1.18) ND ND - 2.66) ND - 1.77) ND - 1.35) 8.2 - 93.6)	0.52 (0.4 0.17 (N 0.73 (N 0.73 (N N N N N N N N N N N N N N N N N N N	$\frac{1}{1}$
China, India, Japan, and	A total of 62 particulate matter samples were collected in air from 9 Asian cities	Reported particulate	range of e matter	PFAS con were: [N	centratic D - (maxi	ons in mum)]:
(Lin et al. 2020)	analyzed for a range of PFAS in 4 size fractions: PM _{<1} , PM _{1-2.5} , PM _{2.5-10} , and PM _{>10} .	PFASPFPrSPFBSPFHXSPFHpSPFOSFOSAMeFOSAEtFOSA6:2 FTSA6:2 CI-PFESAPFBAPFPeAPFPAAPFPAAPFDAPFDAPFDAPFDAPFDAPFDAPFDAPFDAPFDAAPFTDAPFTeDAPFT+DAPFHXDA6:2FTUCA	PM₅10 0.316 0.182 1.41 0.182 1.66 0.198 0.324 2.35 0.786 ND 3.11 1.17 6.60 1.47 7.64 0.627 0.620 0.481 ND 0.184 0.193 0.284 15.3	PM2.5-10 0.343 0.970 7.53 0.261 17.1 0.273 0.359 1.84 2.22 6.05 1.43 1.38 10.56 1.24 11.9 0.703 0.822 0.366 0.185 0.139 0.260 7.02	PM _{1-2.5} 1.39 1.19 3.77 0.203 10.41 0.195 0.453 1.34 2.84 1.91 1.06 0.64 4.43 1.30 9.18 0.596 0.699 0.279 ND 0.247 0.176 0.283 1.88	PM<1 0.413 0.584 1.50 0.826 1.70 0.405 0.531 2.27 1.17 0.791 4.03 2.38 11.39 6.22 52.9 1.98 1.04 0.993 0.443 0.786 0.270 0.412 3.49

Reference/ Location	Summary	Concentrations (pg/m ³) unless otherwise noted
		HFPO- 2.48 4.22 3.13 12.0 DA
Nanjing, China (Yu et al. 2020)	A novel cryogenic air sampler was used to collect ambient air samples from the top of a building at Nanjing University from October 2017 to March 2018. Nontarget analysis was performed to identify PFAS classes and homologues present in the particulate and gas phases.	A total of 38 PFAS classes and 117 PFAS homologues were identified in ambient air. Specific concentrations were not reported. The percentage of PFAS classes and homologues in particulate matter was found to be 15.8% and 24.8%, respectively, with the majority of PFAS detected in the gas phase.
Bohai Sea, Northern China (Zhao et al. 2020)	A total of 52 surface water samples, 30 sediment samples, and 6 air samples were collected on a research vessel in the Bohai Sea in 2017 to investigate the concentration and distribution of 39 targeted PFAS.	Reported concentrations of PFAS in air were (range): PFBA: 17.0–73.2 PFPeA: 1.00-28.2 PFHxA: 23.1-103 PFHpA: 5.40-28.9 PFOA: 17.0-92.6 PFNA: 3.87-32.5 PFDA: 0.48-7.55 PFUnDA: 0.36-1.68 PFDoDA: <mql-2.09 PFBS: <mql-4.75 PFHxS: 0.70-4.86 PFOS: 1.76-6.54 PFDS: <1.76-6.54 PFDS: <mql 4:2 FTSA: <mql 6:2 FTSA: <mql 10:2 FTSA: <mql 3:3 FTCA: <mql 5:3 FTCA: <mql 6:2 FTCA: 3.82-14.3 8:2 FTUCA: 1.92-5.76 6: 2 CI-PFESA: <mql-0.42< td=""></mql-0.42<></mql </mql </mql </mql </mql </mql </mql-4.75 </mql-2.09

Reference/ Location	Summary	Concentra	ations (pg/m³) un noted	less otherwise
		 8:2 CI-PI 6:2 diPA 8:2 diPA HFPO-D ADONA: PFECHS: 6:2 FTOI 8:2 FTOI 10:2 FTO MeFOSA: EtFOSE: MeFOSE 	FESA: <mql P: <mql-2.21 P: <mql-1.59 A: <mql <mql - <mql H: <mql-4.78 H: 60.7-368 OH: 17.6-180 A: <mql-0.07 <mql-0.09 <mql-0.11 E: <mql< td=""><td></td></mql<></mql-0.11 </mql-0.09 </mql-0.07 </mql-4.78 </mql </mql </mql </mql-1.59 </mql-2.21 </mql 	
Gyeongju and Pohang,	In September 2014, multimedia samples were collected along the Hyung-san River,	Reported co samples we	ncentrations of P re (range):	FAS in air
South Korea	including 9 air, 11 surface water, 3 influent and 3 effluent wastewater treatment	PFAS	Gas Phase	Particle Phase (ng/g)
(Seo et al.	plant, 11 soil, 8 sediment, 3 sludge, 11	PFBS	10.26-189.16	0.00-22.12
2019)	nlant and 1 fish Samples were analyzed	PFHxA	9.02-50.10	72.25-462.79
	for a range of neutral and ionic DEAC to	PFHpA	1.00-10.26	4.52-57.14
	for a range of neutral and ionic PFAS to	PFHxS	0.00-17.57	0.00-172.89
	confirm the effects of emission sources	PFOA	5.87-85.32	17.20-191.38
	and the spatial distribution of impacts.	PFNA	3.35-30.78	21.53-138.04
		PFOS	0.00-60.05	40.85-2,047.41
		PFDA	9.87-76.38	4.46-68.87
		PFUnDA	8.17-139.30	20.10-809.34
		PFDS	0.00-24.70	0.00-165.88
		PFDoDA	0.00-50.79	0.00-44.26
		PFTrDA	0.00-40.23	0.00-130.64
		PFTeDA	0.00-32.34	0.00-31.31
		FHEA	0.00-2.10	0.00-30.03
		FOEA	0.00-3.31	0.00-18.22
		FDEA	0.00-12.46	0.00-52.57
		E+EOSAA	0.00-2.44	0.00-13.02
		ECUEA	0.00-4.25	0.00-32.90
		TOOLA	0.00-49.30	0.00-32.90
Global Monitoring Network	Atmospheric concentrations of PFAS and volatile methyl siloxanes were monitored at 21 sites in the Global Atmospheric Passive Sampling (GAPS) Network, The	Reported co all monitorin (range):	ncentrations of P ng sites in 2013 ai	FAS in air across nd 2015 were
(Rauert at al.		PFAS	2013	2015
2018-1	study reports results from samples	6:2 FTOH	<0.4 - 138	< 0.4 - 85
20100)	collected in 2013 and 2015 and compares	8:2 FTOH	1.5 – 73	1.1 – 121
	these to concentrations previously	10:2 FTOH	0.57 – 22	0.51 – 37
	reported from 2009 to assess trends over	MeFOSA	< 0.8 - 1.7	0.30 - 1.8
	reported from 2003 to assess themas over	· · · ·		

Reference/ Location	Summary	Concentrations (pg/m ³) unless otherwise noted		
	7 years of monitoring. The study also compares results by the type of sampling location (polar, background, and urban).	EtFOSA MeFOSE EtFOSE PFBA PFPeA PFHxA PFHpA PFOA PFOA PFDA PFDA PFDA PFDA PFDA PFDA PFDA PFTeDA PFTeDA PFTeDA PFTeDA PFTeDA PFTeDA PFTeDA PFTeDA PFTeDA PFTeDA PFTeDA PFTeDA PFTeDA PFDS PFDS	< 0.07 - 1.2 $0.50 - 3.0$ $< 0.2 - 2.5$ $15 - 2,160$ $0.68 - 12$ $0.46 - 11$ $0.12 - 6.7$ $1.0 - 9.9$ $< 0.2 - 8.1$ $0.092 - 4.1$ $< 0.05 - 2.2$ $0.053 - 1.1$ < 0.08 < 0.08 < 0.08 < 0.08 < 0.08 < 0.09 $0.17 - 5.9$ $0.022 - 3.0$ $0.050 - 9.5$ < 0.06	$\begin{array}{r} 0.068 - 0.94 \\ 0.22 - 4.4 \\ < 0.3 - 1.1 \\ 32 - 703 \\ < 9 - 25 \\ 1.3 - 22 \\ 1.3 - 11 \\ 0.63 - 24 \\ 0.33 - 7.6 \\ 0.24 - 8.3 \\ 0.17 - 2.3 \\ < 0.09 - 2.4 \\ 0.15 - 1.9 \\ 0.09 - 0.39 \\ < 0.07 \\ < 0.08 \\ < 0.2 - 24 \\ < 0.02 - 7.6 \\ < 0.5 - 23 \\ < 0.05 \\ \end{array}$
Central and South America (Rauert et al. 2018b)	Between 2014 and 2016, atmospheric concentrations of a range PFAS, flame retardants, plasticizers, and other chemicals of concern were measured across 7 countries in Central and South America within the Global Atmospheric Passive Sampling (GAPS) Network.	Reported co in air were (6:2 FTO 8:2 FTO 10:2 FTO 10:2 FTO EtFOSA EtFOSA PFBA: < PFBA: < PFPAA: PFHPA: PFHAA: PFHAA: PFNA: 4 PFDAA: 3 PFUNDA PFTrDA PFTrDA PFTrDA PFTrDA PFTrDA PFHxDA PFHxS: 0 PFHxS: 0	oncentrations of I (range): H: <2 H: <4 - 51 OH: <2 - 7.7 A: <0.4 - 0.72 : <0.1 - 2.3 E: 0.19 - 0.91 : <0.3 - 0.48 350 <130 18 - <40 28 - <30 7.9 - <15 4.5 - <9 5.2 - <5 A: 1.6 - <2 A: <0.8 - 0.65 : <0.4 A: <0.2 A: <0.4 <0.4 .82 - 8.1 <0.1 - 3.1	PFAS measured

Reference/ Location	Summary	Concentrations (pg/m ³) unless otherwise noted	
		 PFOS: 2.5 – 10 PFDS: <0.3 	
Bohai Sea, Yellow Sea, and Yangtze River Estuaries, China (Zhao et al. 2017)	15 air samples and 72 surface water samples were collected from a research vessel in 2012. Air samples were analyzed for a range of neutral PFAS.	Reported concentrations of PFAS in air were [mean (range), pg/m ³]: 6:2 FTOH: 2.9 (0.83-6.7) 8:2 FTOH: 182 (55-429) 10:2 FTOH: 34 (13-85) 12:2 FTOH: 5.5 (1.1-22) 8:2 FTAC: 0.58 (<0.20-1.4) MeFOSA: 0.43 (<0.1-1.0) EtFOSA: 3.0 (0.49-8.5) MeFBSA: 1.0 (0.63-1.9) EtFOSE: 0.18 (<0.10-0.27) MeFBSE: 0.50 (0.14-1.5) 	
¹ This table includes information pertaining to the occurrence of PFAS in outdoor air based on the recent literature (2017 – 2022). Information on the occurrence of PFAS in outdoor air prior to 2017 has been archived and can be found in section 17.1.			

LOD = Limit of detection

ND = Nondetect

MQL = Method quantification limit

Reference/ Location	Summary	Concentrations
Hong Kong (Li et al. 2021)	Between Autumn 2017 and Spring 2018, indoor air (PM _{2.5}), tap water, and urine and hair samples from children were collected across 17 kindergartens in Hong Kong and analyzed for a range of PFAS.	 Reported concentrations of PFAS in PM_{2.5} collected from indoor air were [mean (range), pg/m³]: PFHxA: 15.9 (7.98 – 34) PFHpA: 326 (83 – 902) PFOA: 358 (197 – 1,896) PFNA: 17.7 (10.1 – 28.4) PFDA: 658 (0.67 – 1,653)
A University in the Northeastern USA (Young et al. 2021)	In 2019, 15 PFAS and 37 flame retardant chemicals were measured in dust in 47 rooms across 21 buildings, including offices, common areas, and classrooms to evaluate the impact of "healthier" materials interventions.	Reported concentrations of PFAS in dust were [median (range), ng/g]: PFHxA: 146 (18.1-8,310) PFOS: 13.2 (<mdl-2,980) PFOA: 5.62 (<mdl-296) PFHxS: 0.672 (<mdl-1,520) FOSA: 1.39 (<mdl-1,520) PFHpA: 2.2 (<mdl-160) PFHpA: 2.2 (<mdl-236) PFPeA: 0.745 (<mdl-160) PFNA: 0.93 (<mdl-455) PFBS: 0.159 (<mdl-1,760) PFBS: 0.159 (<mdl-1,480) PFDS: 0.048 (<mdl-16.1) PFBA: 0.746 (<mdl-16.1) PFBA: 0.746 (<mdl-12.5) PFDA: 0.355 (<mdl-155) PFUnDA: <mdl PFDoDA: <mdl MEFOSAA: <mdl< td=""></mdl<></mdl </mdl </mdl-155) </mdl-12.5) </mdl-16.1) </mdl-16.1) </mdl-1,480) </mdl-1,760) </mdl-455) </mdl-160) </mdl-236) </mdl-160) </mdl-1,520) </mdl-1,520) </mdl-296) </mdl-2,980)

Table 17-1B. Observed PFAS concentrations in indoor air and settled dust¹

Summary	Concentrations				
Researchers analyzed dust and nap mats from 8 childcare facilities and evaluated them for a range of neutral and ionic PFAS.	Reported PFAS concentrations in indoor dust were [median (range), ng/g]:				
		PFAS	Dust		
		PFBA	3.2 (ND-9.9)		
		PFPeA	0.32 (ND-3.5)		
		PFHxA	1.4 (0.17-3.4)		
		PFHpA	0.61 (0.14-1.3)		
		PFOA	2.0 (0.34-5.1)		
		PFNA	1.7 (0.11-13)		
		PFDA	0.59 (0.22-2.4)		
		PFUnDA	0.65 (0.05-3.0)		
		PFDoDA	0.58 (0.26-3.1)		
		PFTrDA	0.31 (ND-2.2)		
		PFTeDA	0.29 (ND-4.4)		
		PFHxDA	ND		
	PFBS 0.25 (ND-0.86) PFHxS 0.25 (ND-0.89) PFOS 1.2 (0.23-4.2) PFDS 0.89 (ND-34) 4:2 FTSA 1.8 (ND-1.8) 6:2 FTSA 12 (ND-63)		0.25 (ND-0.86)		
			0.25 (ND-0.89)		
			1.2 (0.23-4.2)		
			0.89 (ND-34)		
			1.8 (ND-1.8)		
			12 (ND-63)		
		8:2 FTSA	5.8 (ND-46)		
		6:2 FTOH	130 (ND-2,500)		
		8:2 FTOH	20 (ND-140)		
		10:2	40 (ND-460)		
		FTOH			
		MeFOSE	11 (ND-190)		
		EtFOSE	15 (ND-200)		
		FOSA	0.05 (ND-0.30)		
		MeFOSA	ND		
		EtFOSA	ND		
		6:2 FTAcr	2.9 (0.07-37)		
As part of an exposure assessment study, 168 indoor dust samples were collected from households in Shandong and Shanghai between August 2015 and May 2017. 27 drinking water samples were also collected in Shanghai in May 2017,	 Reported PFAS concentrations in indoor were [mean (range), ng/g]: PFOA: 75.49 (2.54 – 450.96) PFOS: 15.13 (ND – 1,999.45) PFNA: 27.01 (ND – 123.44) PFBS: 131.57 (1.18 – 1,587.54) PFHpA: 16.58 (ND – 3.065.53) 				
	Summary Researchers analyzed dust and nap mats from 8 childcare facilities and evaluated them for a range of neutral and ionic PFAS. As part of an exposure assessment study, 168 indoor dust samples were collected from households in Shandong and Shanghai between August 2015 and May 2017. 27 drinking water samples were also collected in Shanghai in May 2017,	Summary Researchers analyzed dust and nap mats from 8 childcare facilities and evaluated them for a range of neutral and ionic PFAS. Repor were and As part of an exposure assessment study, 168 indoor dust samples were collected from households in Shandong and Shanghai between August 2015 and May 2017. 27 drinking water samples were also collected in Shanghai in May 2017, PF e Repor were	SummaryCorResearchers analyzed dust and nap mats from 8 childcare facilities and evaluated them for a range of neutral and ionic PFAS.Reported PFAS com- were [median (range PFBA PFPeA PFPAA PFFDA PFFDA PFDA PFDA PFDS 4:2 FTSA 6:2 FTSA 6:2 FTOH 10:2 FTOH 10:2 FTOH 10:2 FTOH 10:2 FTOH 10:2 FTOH 10:2 FTOH 10:2 FOSA MeFOSA EtFOSE FOSA MeFOSA EtFOSA 6:2 FTACrAs part of an exposure assessment study, 168 indoor dust samples were collected from households in Shandong and Shanghai between August 2015 and May 2017. 27 drinking water samples were also collected in Shanghai in May 2017, PFNA: 27.001 (N PFBS: 131.57 (1 PFHpA: 16.58 (1)	SummaryConcentrationsResearchers analyzed dust and nap mats from 8 childcare facilities and evaluated them for a range of neutral and ionic PFAS.Reported PFAS concentrations in indoor d were (median (range), ng/g):PFBA3.2 (ND-9.9) PFPeAPFBA3.2 (ND-3.5) PFHAAPFBA0.61 (0.14-1.3) PFOAPFOA0.51 (0.14-1.3) PFOAPFOA0.59 (0.22-2.4) PFDDAPFDDA0.59 (0.22-2.4) PFDDAPFDDA0.59 (0.22-2.4) PFDDAPFDDA0.59 (0.22-2.4) PFDDAPFDDA0.58 (0.26-3.1) PFTDAPFTcDA0.31 (ND-2.2) PFTDAPFTDA0.31 (ND-2.2) PFTDAPFTDA0.21 (ND-4.4) PFTDAPFTDA0.22 (ND-0.86) PFHxSPFTS0.25 (ND-0.86) PFHxSPFTS0.25 (ND-0.81) PFDSPFDS0.26 (ND-4.4) PFDSPFDS0.27 (ND-4.4) PFDSPFTDA0.11 (ND-2.2) PFDSPFTS0.28 (ND-4.4) PFTSPFTS0.25 (ND-0.80) PFDSPFTS0.25 (ND-0.80) PFOSPFTS0.25 (ND-0.30) MeFOSAMeFOSE11 (ND-180) EtFOSEEtFOSE15 (ND-200) FOSANDEtFOSEEtFOSAND EtFOSEShandong and Shanghai between August 2015 and May 2017. 27 drinking water samples were also collected in Shanghai in May 2017, 27drinking water samples were also collected in Shanghai in May 2017, 7PFNA: 27.01 (ND -123.44) PFHA: 16.58 (ND -3,065.53)	

Reference/ Location	Summary	Concentrations			
	including tap water, filtered water, and bottled water.	 PFHxS: 491.07 (1.33 – 1,902.24) ∑PFAS: 756.85 (18.88 – 4,502.21) 			
Thessaloniki, Greece (Besis et al. 2019)	Measured a range of PFAS in dust accumulated on central air- conditioning filters in a variety of workplace microenvironments from December-June 2012.	Reported concentrations of PFAS in central air conditioner filter dust were [mean (range), ng/g]: PFBS: 22.9 (<mdl 98.8)<br="" –="">PFHxS: 2.06 (<mdl 39.9)<br="" –="">PFOS: 23.5 (<mdl 227)<br="" –="">PFDS: 2.88 (<mdl 11.6)<br="" –="">FOSA: 0.207 (<mdl 0.854)<br="" –="">PFBA: 28.8 (<mdl 164)<br="" –="">PFPeA: 1.51 (<mdl 11.3)<br="" –="">PFHxA: 11.1 (<mdl 72.5)<br="" –="">PFHpA: 12.6 (<mdl 117)<br="" –="">PFOA: 80.0 (<mdl 653)<br="" –="">PFNA: 2.52 (<mdl 11.4)<br="" –="">PFDA: 3.41 (<mdl 7.38)<br="" –="">PFUnDA: 1.50 (<mdl 3.68)<br="" –="">PFDoDA: 4.92 (<mdl 13.1)<="" td="" –=""></mdl></mdl></mdl></mdl></mdl></mdl></mdl></mdl></mdl></mdl></mdl></mdl></mdl></mdl>			
Belgium, Italy, and Spain (de la Torre et al. 2019)	65 dust samples were collected from domestic vacuum cleaner bags used to clean homes in Belgium (n=22), Italy (n=22), and Spain (n=21) between September 2016 and January 2017. Samples were analyzed for a range of PFAS.	Reported concentrations of PFAS in household dust were [median (range), ng/g]: PFBS: 0.40 (ND – 56.7) PFHxS: 0.13 (ND – 11.3) PFOS: 0.28 (ND – 11.9) PFBA: 0.11 (ND – 20.9) PFPeA: 0.02 (ND – 21.3) PFHxA: 0.31 (ND – 28.3) PFHpA: 1.00 (ND – 105) PFOA: 1.41 (0.21 – 53.0) PFNA: 0.04 (ND – 9.04) PFDA: 0.49 (ND – 25.8) PFUnDA: 0.17 (ND – 7.68) PFDoDA: 0.28 (ND – 19.7) PFTrDA: 0.23 (ND – 11.1) PFTeDA: 1.11 (ND – 38.4) PFHxDA: 0.75 (ND – 14.9) PFODA: 0.46 (ND – 4.96) FOSA: 0.01 (ND – 1.05) Σ PFAS: 12.9 (3.13 – 155)			

Reference/ Location	Summary	Concentrations
Stockholm, Sweden (Giovanoulis et al. 2019)	Dust samples were collected from elevated surfaces across 20 preschools in the Stockholm area from January to February 2018 to evaluate the impact of interventions undertaken to reduce the presence of hazardous chemicals. Samples were analyzed for a range of PFAS and other chemicals, including plasticizers and organophosphate esters, bisphenols, and polybrominated diphenyl esters.	Reported concentrations of PFAS is dust samples were [median (95 th percentile), ng/g]: PFBA: <lod (18.4)<br="">PFPeA: <lod (7.61)<br="">PFHxA: <lod (15.2)<br="">PFHpA: <lod (8.894)<br="">PFOA: 7.71 (35.1) PFNA: 1.09 (56.0) PFDA: <lod PFUnDA: <lod (9.68)<br="">PFDoDA: <lod (9.68)<br="">PFBS: <lod PFHxS: <lod PFHxS: <lod PFHxS: <lod PFDS: 12.2 (48.9) PFDS: <lod (209)<br="">FOSA: <lod (0.287)<br="">6:2 FTSA: <lod 6:2 PAP: 151 (2,728) 8:2 PAP: <lod (423)<br="">6:2 diPAP: 1,143 (42,281) 8:2 diPAP: 35.9 (377) MeFOSAA: <lod EtFOSAA: 18.4 (283) 6:2 FTOH: 4.05 (399) 8:2 FTOH: 18.3 (142) 10:2 FTOH: 12.4 (74.8)</lod </lod></lod </lod></lod></lod </lod </lod </lod </lod></lod></lod </lod></lod></lod></lod>
Eastern Finland (Winkens et al. 2018)	Floor dust samples from 65 children's bedrooms in Finland were collected in 2014 and 2015 and analyzed for 62 different PFAS.	Reported concentrations in floor dust were (mean ± SD, ng/g) PFBS: 21 ± 2.87 PFHxS: 1,420 ± 191 PFOS: 1,860 ± 256 PFDS: 403 ± 32 PFBA: 229 ± 25.2 PFPeA: 235 ± 24.4 PFHxA: 349 ± 33.2 PFHpA: 360 ± 36 PFOA: 747 ± 26.6 PFNA: 90.1 ± 12 PFDA: 66.9 ± 10.7 PFUnDA: 41.5 ± 4.21

Reference/ Location	Summary	Concentrations			
St. Lawrence	Measured a range of PFAS and	 PFDoDA: 37.9 ± 4.15 PFTrDA: 29.6 ± 4.4 PFTeDA: 30.8 ± 5.88 FOSA: 6.77 ± 1.42 EtFOSA: 7.26 ± 1.02 MeFOSAA: 64.5 ± 18 EtFOSAA: 444 ± 54.6 6:2 FTSA: 404 ± 139 8:2 FTSA: 212 ± 50.6 6:2 PAP: 208 ± 26.1 8:2 PAP: 190 ± 27.1 6:2 diPAP: 675 ± 28.3 8:2 di PAP: 227 ± 27.3 Reported concentrations of PFAS in household			
Island, Alaska, USA (Byrne et al. 2017)	polybrominated diphenyl ethers in 2013 and 2014 in different media in two remote native Alaskan villages, including house dust from 49 households, blood serum from 85 island residents, and two sentinel fish species.	 dust were [median (25th – 95th percentile), ng/g]: PFBA: <lod (<lod="" 0.40)<="" li="" –=""> PFPeA: <lod (<lod="" 1.09)<="" li="" –=""> PFHxA: <lod (<lod="" 2.29)<="" li="" –=""> PFHpA: 0.39 (<lod 3.22)<="" li="" –=""> PFOA: 0.76 (0.34 – 3.37) PFNA: <lod (<lod="" 1.93)<="" li="" –=""> PFDA: <lod (<lod="" 2.16)<="" li="" –=""> PFUnA: <lod (<lod="" 0.38)<="" li="" –=""> PFDoDA: <lod (<lod="" 1.13)<="" li="" –=""> PFBS: <lod (<lod="" 1.76)<="" li="" –=""> PFHxS: <lod (<lod="" 3.13)<="" li="" –=""> PFOS: 1.40 (<lod 23.56)<="" li="" –=""> PFOSA: <lod< li=""> </lod<></lod></lod></lod></lod></lod></lod></lod></lod></lod></lod></lod>			

Reference/ Location	Summary	Concentrations				
Oslo, Norway (Padilla-Sanchez et al. 2017)	Between November 2013 and April 2014, 61 residential indoor air and 15 personal air samples were collected in the area of Oslo, Norway and analyzed for 7 volatile PFAS as part of a comprehensive exposure assessment study.	Reported concentrations of PFAS measured in residential indoor air and from personal air samples were [mean (range), pg/m ³]: PFAS Residential Indoor Air Personal Air Samples 6:2 FTOH 8,550 (604-101,000) 4,870 (543-37,000) 8:2 FTOH 29,400 (1,220- 446,000) 11,400 (2,690- 57,800) 10:2 FTOH 12,300 (697-255,000) 2,550 (170-9,000) MEFOSA 1,350 (<mdl-78,300)< td=""> < MDL (<mdl-225)< td=""> EtFOSA 69 (<mdl-13,50)< td=""> <mdl< td=""> MEFOSE 2,050 (<mdl-38,800)< td=""> <mdl (<mdl-1,105)<="" td=""> EtFOSE 776 (<mdl-13,200)< td=""> <mdl< td=""></mdl<></mdl-13,200)<></mdl></mdl-38,800)<></mdl<></mdl-13,50)<></mdl-225)<></mdl-78,300)<>				
Eastern Finland (Winkens et al. 2017)	Indoor air samples were collected in children's bedrooms in 57 households and analyzed for 17 PFAAs and 9 precursors.	Reported concentrations in indoor air were [mean (range), pg/m ³]; if no mean was reported only the range is shown: PFBS: (BDL-15.0) PFHxS-branched: (BDL-0.30) PFHxS-linear: (BDL-1.61) PFOS-branched: 0.74 (BDL-2.93) PFOS-linear: 1.33 (BDL-5.04) PFHxA: 13.5 (BDL-144) PFHpA: (BDL-12.6) PFOA-branched: (BDL-2.65) PFOA-linear: 21.2 (BDL-99.8) PFNA: 3.06 (0.95-16.5) PFDA: 6.01 (1.27-29.6) PFUnDA: 1.04 (BDL-8.24) PFDoDA: 1.18 (BDL-5.65) PFTrDA: (BDL-2.22) PFTeDA: 0.44 (BDL-1.79) PFPeDA: (BDL-1.06) 6:2 FTAC: (BDL-61.2) 6:2 FTMAC: 285 (BDL-13,000) 6:2 FTOH: 1,810 (BDL-8,060) 8:2 FTOH: 4,250 (1,290-13,500) 10:2 FTOH: 1,240 (210-8,950) EtFOSA: (BDL-340) MEFOSA: (BDL-20.0) EtFOSE: 24.1 (BDL-132)				

Reference/ Location	Summary	Concentrations					
		• MeFOSE: 89.9 (BDL-394)					
Alberta, Canada (Beesoon et al.	In September 2018, carpet, vacuum dust, and indoor air samples were collected from a family home to	Report dust w	ed concentr ere (ng/g):	ations of F	PFAS in vac	uum	
2012) investigate potential sources of PFAS exposure where residents were found to have abnormally high PFHxS serum levels. Samples of blood,		FFAJ	2008 (n=1)	2012 (n=1)	1		
		PFOS	1,090	184			
		PFOA	555.0	88.0			
	urine, and stool were also collected		PFHxS	2,900	253		
	from all family members in November 2008. A subsequent sample of vacuum dust was also collected in 2012.	Reported concentrations of PFAS in indoor air were (range, pg/m ³):					
			PFAS	Inc	door Air (n=2)		
			8:2 FTOH	3,28	0-4,640		
			10:2 FTOH	831	L — 1,470		
		MeFOSE 1,210 – 8,400					
		EtFOSE 680 – 1,110					

¹ This table includes information pertaining to the occurrence of PFAS in: (a) indoor air based on the recent literature (2017 – 2022) and (b) new information on indoor settled dust that was not included in the previous version of the PFAS Technical and Regulatory Document. Information on the occurrence of PFAS in indoor air prior to 2017 has been archived and can be found in section 17.1.

BDL = Below detection limit

LOD = Limit of detection

ND = Nondetect

MDL = Method detection limit

SD = standard deviation

Reference/ Location	Summary	Concentrations (ng/L)				
Deception and Livingston Islands, Antarctica (Casas et al. 2021)	21 rain samples and 20 air samples were collected during the Antarctic summer of 2017–2018 to assess the potential for rain amplification for different legacies and emerging POPs, including a range of PFAS.	Reported concentration ranges for PFAS i rainwater were: PFBS: 0.005-0.33 PFOS: ND-0.31 PFBA: ND-6.6 PFHxA: ND-0.36 PFHpA: 0.013-0.38 PFOA: 0.020-0.531 PFNA: 0.012-0.414 PFDA: 0.011-0.280 PFUnDA: 0.0035-0.088 PFTrDA: ND-0.021 PFTeDA: ND-0.098				
European High Arctic	In August 2019, snow, sea ice,	Reported	d concentrat	ions of PFA	S in snow,	
(Garnett et al. 2021)	melt ponds, and near-surface	sea ice, a	and melt por	nds were (m	ean ± SD):	
	seawater were sampled at two ice-covered stations located	PFAS	Snow (n=6)	Sea Ice (n=34)	Melt Pond (n=6)	
	north of the Barents Sea and	PFBA	2.629 ±	1.384 ±	0.835 ±	
	analyzed for a range of trads.	PFBS	< MDL	1.259 ± 3.403	<mdl< td=""></mdl<>	
		PFPeA	0.088 ±	0.030 ±	0.060 ±	
		PFHxA	0.030 0.070 ±	0.055 0.080 ±	0.015 0.058 ±	
			0.049	0.186	0.013	
		PFHpA	0.125 ± 0.086	0.085 ± 0.087	0.120 ± 0.025	
		PFOA	0.041 ±	0.146 ±	0.042 ±	
		DEOC	0.017	0.294	0.010	
		PFUS	<ividl< td=""><td>0.013 ± 0.018</td><td>0.004 ± 0.009</td></ividl<>	0.013 ± 0.018	0.004 ± 0.009	
		PFNA	0.064 ±	0.043 ±	0.046 ±	
		PEDA	0.020	0.033	0.021	
		FIDA	0.022 1	0.112	0.005	
		PFUnDA	0.021 ± 0.011	0.023 ± 0.036	0.006 ± 0.006	
		PFDoDA	0.015 ±	0.020 ±	0.010 ±	
		PETrDA	0.021 <mdi< td=""><td>0.030</td><td>0.009 <mdi< td=""></mdi<></td></mdi<>	0.030	0.009 <mdi< td=""></mdi<>	
		TT TOA	NIDE	0.006	SINDE	
		PFTeDA	<mdl< td=""><td>0.001 ± 0.003</td><td><mdl< td=""></mdl<></td></mdl<>	0.001 ± 0.003	<mdl< td=""></mdl<>	
Ohio, Indiana, and Wyoming, USA (Pike et al. 2021)	Rain samples were collected at 7 locations across 3 states during the summer of 2019 and analyzed for a range of PFAS.	Reported rainwate • TFA: • PFBA • PFP6	d concentrat er were: 50-1,200 A: 0.002-290 eA: 0.01-120	ion ranges f	or PFAS in	

Table 17-1C. Observed PFAS concentrations in Precipitation

		PEHyA: 0.05-80
		 DEHpA: 0.09-50
		 PFOA: 0.03-30 DENA: 0.01.10
		• PFNA: 0.01-10
		• PFDA: 0.02-20
		• PFOS: 0.07-50
		• HFPO-DA: 0.0005-5
Antarctica	Concentrations of 16 PFAS, 9	Reported PFAS concentrations in surface
(Xie et al. 2020)	organophosphate esters, and 17	snow were [mean (range)]:
	polycyclic aromatic hydrocarbons	 PFPeA: 0.175 (0.073-0.446)
	were investigated in surface	 PFHxA: 0.222 (0.092-0.373)
	snow samples collected at Dome	 PFHpA: 0.183 (0.094-0.266)
	C on the Antarctic Plateau during	 PFOA: 0.358 (0.273-0.539)
	the summer of 2016.	 PFNA: 0.073 (0.038-0.095)
		 PFDA: 0.030 (0.022-0.041)
		 PFUnDA: 0.008 (0.0056-0.011)
		 PFDoDA: 0.0039 (0.0023-0.0063)
		• PETrDA: 0.0021 (0.0005-0.0036)
		 PETeDA: 0.0023 (0.0009-0.0043)
		 PEBS: 0.024 (0.017-0.035)
		$= \text{PEH}_{x} S \cdot 0.006 (0.0013 \cdot 0.033)$
		$= \text{PFH}_{x}^{(0)} (0.0015 \cdot 0.012)$
		• $PFHp3: 0.0013 (0.0000-0.0044)$
		 PFOS: 0.046 (0.036-0.062) PFDS: 0.0202 (0.0201 0.0202)
		 PFDS: 0.0003 (0.0001-0.0008) UFDO DA 0.0002 (0.0001-0.0008)
		• HFPO-DA: 0.0092 (0.0063-0.013)
Mainland China	39 samples of rainwater were	Reported PFAS concentrations in
(Chen et al. 2019)	collected across 28 cities in	rainwater were (range):
	Mainland China and analyzed for	• IFA: 8.8-1,800
	a range of PFAS to investigate the	• PFPrA: ND-24
	occurrence, spatial distribution,	PFBA: ND-41
	and fluxes in precipitation at a	PFPeA: ND-22
	nationwide scale in urban areas	PFHxA: ND-18
	across mainland China.	PFHpA: ND-54
		 PFOA: 0.30-100
		PFNA: ND-13
		PFDA: ND-22
		 PFUnDA: ND-6.6
		PFDoDA: ND-1.7
		 PFBS: ND-51
		PFHxS: ND-4.3
		• PFOS: 0.90-20
		• 8:2 FTUCA: ND-2.1
		• 6:2 FTSA: ND-3.6
		• 6:2 CI-PFAES: ND-6.5
		• 6:2 diPAP: ND-0.16
		• 8:2 diPAP: ND-9.2

Great Lakes, USA (Gewurtz et al. 2019)	Precipitation and surface water samples were collected throughout the Great Lakes from 2006 to 2018 and analyzed for a range of PFAS to evaluate time trends and seasonal variability.	The reported PFAS concentrations in precipitation were [median (maximum)]: PFBA: 0.93 (14) PFPeA: <rl (1.3)<br="">PFHxA: 0.23 (7.4) PFHpA: 0.29 (2.7) PFOA: 0.46 (11) PFNA: 0.30 (2.5) PFDA: 0.15 (2.0) PFUnDA: <rl (4.5)<br="">PFDoDA: <rl (5.3)<br="">PFOS: 0.93 (14)</rl></rl></rl>			
Ellesmere Island, Nunavut, Canada (MacInnis et al. 2019)	In 2013 and 2014, integrated snowpack samples, including dust-impacted light and dark snowpack samples were collected from the ice-covered Lake Hazen surface and from the surrounding landscape and analyzed for a range of PFAS.	Reported concentrations of PFAS in snowpack were (range): PFBA: 1.2-52 PFPeA: 0.083-1.6 PFHxA: 0.12-1.6 PFHpA: 0.29-4.3 PFOA: 0.35-10 PFNA: 0.37-5.3 PFDA: 0.082-1.7 PFUnDA: 0.048-0.80 PFDoDA: 0.010-0.31 PFTrDA: <0.002-0.10 PFTeDA: <0.002-0.10 PFTeDA: <0.002-0.40 PFBS: <0.002-0.44 PFOS: 0.009-1.0			
Western China	In 2017. 15 surface snow and 3	Concentra	tions of PFAS in	surface and	
(Wang et al. 2019)	subsurface snow samples were	subsurfac	e snow were (rai	nge):	
	collected across a vast area of	PFAS	Surface Snow	Subsurface	
	western China to investigate the	DEDC	0.0055.0.0070	Snow	
	concentrations, composition	PEHAC DEHAC	0.0055-0.0678	ND-0.0192	
	profiles, and deposition fluxes of	PFHnS	0.0003-0.0032	ND-0.0112	
	PFAS.	PFOS	0.1096-0.9947	.025-0.6533	
		PFDS	0.0005-0.0052	ND-0.0324	
		PFBA	0.0985-0.7833	0.079-0.5954	
		PFPeA	0.0245-0.1036	0.0035-0.1924	
		PFHxA	0.0113-0.0647	BDL-0.0492	
		PFHpA	0.0224-0.1053	0.0045-0.1253	
		PFOA	0.0478-1.089	0.0789-0.889	
		PFNA	0.0679-0.6542	0.0235-0.7542	
			0.0344-0.5646	0.0264-0.2348	
			0.01034-0.0102	0.0023-0.0178	
		PFTrDA	0.0015-0.0234	ND-0.0055	

		PFTeDA 0.0013-0.0092 ND-0.0026
Svalbard, Norwegian	Soil, freshwater, seawater,	Reported concentrations in meltwater
Arctic	meltwater, runoff water, surface	runoff and surface snow were (range):
(Skaar et al. 2018)	snow, and coastal sediment	• ∑PFAS (meltwater, n=2): 1.1-4.2
	samples were collected from	• ∑PFAS (surface snow, n=2): 1-2
	Longyearbyen (Norwegian mining	
	town), NyÅlesund (research	
	facility) and the Lake Linnévatnet	
	area (background site) during	
	several campaigns (2014–2016)	
	and analyzed for 14 individual	
	PFAS.	
Livingston Island,	Fresh snow deposition, surface	Reported concentrations is snow (range):
Antarctica	snow, streams from melted	• PFHxS: ND-0.023
(Casal et al. 2017)	snow, coastal seawater and	 PFOS: 0.0013-0.750
	plankton samples were collected	 PFDS: ND-0.0013
	from December 2014–February	• PFBA: ND-0.530
	2015 at Livingston Island to	• PFPeA: ND-0.053
	evaluate the role of snow	• PFHxA: ND-0.230
	deposition as an input of PFAS to	• PFHpA: ND-0.310
	Maritime Antarctica.	• PFOA: 0.029-1.300
		• PFNA: ND-0.330
		• PFDA: 0.0031-0.600
		• PFUnDA: ND-0.150
		• PFDoDA: ND-0.180
		• PFTrA: ND-0.032
		• PFTeA: ND-0.020
		• ∑PFAS: 0.082-3.600
Eastern China, Yangtze	17 soil, 23 river water, 17	Reported PFAS concentrations in
River Delta	groundwater, 4 tap water, and 20	rainwater were (range):
(Lu et al. 2018)	rainwater samples were collected	• PFBA: <0.1 – 44.9
	in 2015 and 2017 and analyzed	• PFPeA: <0.2 – 22.0
	for a range of PFAS to evaluate	• PFHxA: 0.4 – 151.1
	impacts in the vicinity of a	• PFHpA: 0.6 – 16.0
	fluorochemical industrial park.	• PFOA: 6.7 – 324.7
		• PFNA: 0.4 – 8.1
		• PFDA: <0.2 – 7.2
		• PFUnDA: <0.2 – 6.7
		• PFBS: <0.5
		• PFHxS: <0.5 – 3.7
		• PFOS: <0.5 – 6.2

Arctic Ocean	Vertical profiles from the Central	Reported co	ncentrations of	PFAS in snow
(Yeung et al. 2017)	Arctic Ocean and shelf water.	and melt pond water were (range):		
, ,	snow, and melt pond water	PFAS	Snow	Melt Pond
	samples were collected in 2012			Water
	and analyzed for a range of PFAS.	PFHxA	0.026-0.109	0.016-0.150
		PFHpA	0.014-0.049	0.029-0.039
		PFOA	0.072-0.294	0.057-0.062
		PFNA	0.033-0.253	0.085-0.106
		PFDA	0.033-0.142	0.014
		PFUnDA	0.021-0.092	0.013
		PFDoDA	0.088	-
		PFHxS	0.018	-
		PFOS	0.034-0.343	0.034-0.042
		PFDS	0.011	-
		MeFOSAA	0.036	-
		EtFOSAA	0.009-0.036	-
		FOSA	0.020-0.156	0.023
Antarctica (Zhen et al. 2015)	33 air samples were collected onboard a research vessel during	Reported co were [mean	ncentrations of ± SD (range)]:	PFAS in snow
	an expedition research cruise	• 6:2 FTOH	1: 0.026 ± 0.029	9 (0.005-0.115)
	across the Atlantic Ocean,	• 8:2 FTOH	1: 0.077 ± 0.025	5 (0.040-0.130)
	Southern Ocean, and the	• 10:2 FTC	0H: 0.024 ± 0.00	083 (0.0093-
	Antarctic Peninsula from October	0.036)		
	2010 to January 2011. 12 snow	• 12:2 FTC	$H: 0.013 \pm 0.00$	041 (0.0056-
	samples were also collected on	0.019)		/
	lanuary 2011	MeFBSA	: 0.0009 ± 0.000	05 (0.0002-
	January 2011.	0.0021)	. 0. 002 + 0. 001	(0.0012
		 NIEFUSA 0.0048) 	0.003 ± 0.001	(0.0012-
		 EtEOSA: 	0 0016 + 0 000	7 (0-0 003)
		MeEBSE	0.0028 ± 0.001	12 (0.0014-
		0.0054)		(
		MeFOSE	: 0.048 ± 0.016	(0.024-0.074)
		• EtFOSE:	0.010 ± 0.0046	(0.0038-0.020)
		• 6:2 FTA:	0.0014 ± 0.000	5 (0.0007-
		0.0021)		
		• 8:2 FTA:	0.0009 ± 0.000	5 (0-0.0018)
		● ∑PFAS: C	.209 ± 0.057 (0	.125-0.303)
Tsukuba City and	2 rainwater samples were	Reported co	ncentrations of	PFAS in
Kawaguchi City, Japan	collected from each city in May	rainwater we	ere (range):	
(Taniyasu et al. 2008)	and July 2007 and analyzed for a	• PFOS: 0.	132-1.02	
	range of PFAS.	PFOSA: (0.064-0.170	
		 EtFOSAA 	: 0.039-0.326	

		PEDol	DA: 0.135-0.248	
		DELINI	۸·0 3/8-0 723	
			DA. 0.340-0.723	
		PFDA:	0.519-0.846	
		• PFNA:	1.04-4.17	
		PFOA	0.991-3.78	
		 PFHp/ 	A: 0.486-3.06	
		• PFHxA	: 0.483-2.76	
		PFPeA	.: 0.244-1.11	
		• PFBA:	0.769-2.22	
		 PFPrA 	: 7.33-10.3	
		• TFA: 3	9.3-75.9	
		• 8:2 FT	CA: 1.04-1.94	
		• 10:2 F	TUCA: 0.009-0.0	14
		• 8:2 FT	UCA: 0.035-0.23	0
		• 6:2 FT	UCA: 0.022	
Parkersburg West	Concurrent rain and air samples	Reported	PFOA concentrat	tion in rainwater
Virginia	were collected at 9 locations in	was (rang	e):	
(Barton Kaiser and	the vicinity of a manufacturing		< 8 8-1 660	
Russel 2007)	facility during 4-br precipitation	- 110/	10.0 1,000	
1033012007	avont in August 2005. Continuous			
	event in August 2005. Continuous			
	air and precipitation sampling			
	was also performed over a 24-hr			
	period in August 2006. All			
	samples were analyzed for PFOA.			
Albany, New York, USA	Lake water (n=26), rainwater	Reported	concentrations i	n rainwater and
(Kim and Kannan 2007)	(n=11), snow (n=27), and surface	snow wer	e [mean (range)]	:
	runoff water (n=7) samples were	PFAS	Rainwater	Snow
	collected in an urban area	PFHpA	0.69 (<0.25-2.32)	0.45 (<0.25-1.61)
	between February 2006 and	PFOA	2.53 (<0.75-7.27)	4.89 (<0.75-19.6)
	between February 2000 and	PFNA	1.27 (<0.25-3.48)	0.91 (<0.25-4.94)
	March 2007 and analyzed for a	PFDA	0.41 (ND-1.14)	0.45 (ND-1.37)
	range of PFAS.	PFUNDA	0.44 (<0.25-0.86)	0.30 (ND-1.08)
		PEDODA	<0.25 (<0.25-0.71)	<0.25 (<0.25-0.41)
		PEOS	(10-0.30)	(10-0.33)
		PEDS	<0.25 (ND-0.41)	ND
		PEOSA	ND	<0.25 (ND-0.57)
		6:2 FTSA	<0.25 (ND-0.41)	<0.25 (ND-0.34)
		8:2 FTSA	0.56 (<0.25-3.19)	0.44 (ND-3.37)
			· · · ·	· · · · · · · ·
BDL = Below detection liv	nit			
IDI = Instrument detection in	an limit			
NDL - Mothed detection				
MOL - Method quantific	ninnu ation limit			
ND - Nondetect				
RU = Nonuetect				
RL = Reporting limit				
SD = Standard deviation				

References for outdoor air, indoor air and settled dust, and precipitation

Ao J, Yuan T, Xia H, Ma Y, Shen Z, Shi R, Tian Y, Zhang J, Ding W, Gao L, Zhao X, Yu X. 2019. Characteristic and human exposure risk assessment of per- and polyfluoroalkyl substances: A study based on indoor dust and drinking water in China. Environ Pollut 254:112873. https://doi.org/10.1016/j.envpol.2019.07.041

Barton, C. A., M. A. Kaiser, and M. H. Russell. 2007. "Partitioning and removal of perfluorooctanoate during rain events: the importance of physical-chemical properties." Journal of Environmental Monitoring 9 (8):839-46. <u>https://doi.org/10.1039/b703510a</u>

Beesoon S, Genuis SJ, Benskin JP, Martin JW. 2012. Exceptionally high serum concentrations of perfluorohexanesulfonate in a Canadian family are linked to home carpet treatment applications. Environ Sci Technol 46(23):12960-7. <u>https://doi.org/10.1021/es3034654</u>

Beser MI, Pardo O, Beltrán J, Yusà V. 2011. Determination of per- and polyfluorinated substances in airborne particulate matter by microwave-assisted extraction and liquid chromatography-tandem mass spectrometry. J Chromatogr Am1218(30):4847-55. <u>https://doi.org/10.1016/j.chroma.2011.04.082</u>

Besis A, Botsaropoulou E, Samara C, Katsoyiannis A, Hanssen L, Huber S. 2019. Perfluoroalkyl substances (PFASs) in air-conditioner filter dust of indoor microenvironments in Greece: Implications for exposure. Ecotoxicol Environ Saf 183:109559. <u>https://doi.org/10.1016/j.ecoenv.2019.109559</u>

Byrne S, Seguinot-Medina S, Miller P, Waghiyi V, von Hippel FA, Buck CL, Carpenter DO. 2017. Exposure to polybrominated diphenyl ethers and perfluoroalkyl substances in a remote population of Alaska Natives. Environ Pollut 231: 387-395. <u>https://doi.org/10.1016/j.envpol.2017.08.020</u>

Casal P, Zhang Y, Martin JW, Pizarro M, Jiménez B, Dachs J. 2017. Role of Snow Deposition of Perfluoroalkylated Substances at Coastal Livingston Island (Maritime Antarctica). Environ Sci Technol 51(15):8460-8470. <u>https://doi.org/10.1021/acs.est.7b02521</u>

Casas G, Martínez-Varela A, Roscales JL, Vila-Costa M, Dachs J, Begoña Jiménez. 2020. Enrichment of perfluoroalkyl substances in the sea-surface microlayer and sea-spray aerosols in the Southern Ocean. Environ Pollut 267: 115512. <u>https://doi.org/10.1016/j.envpol.2020.115512</u>

Casas G, Martinez-Varela A, Vila-Costa M, Jiménez B, Dachs J. 2021. Rain Amplification of Persistent Organic Pollutants. Environ Sci Technol 55(19):12961-12972. <u>https://doi.org/10.1021/acs.est.1c03295</u>

Chen H, Zhang L, Li M, Yao Y, Zhao Z, Munoz G, Sun H. 2019. Per- and polyfluoroalkyl substances (PFASs) in precipitation from mainland China: Contributions of unknown precursors and short-chain (C2C3) perfluoroalkyl carboxylic acids. Water Res 153:169-177 <u>https://pubmed.ncbi.nlm.nih.gov/30711792/</u>

de la Torre A, Navarro I, Sanz P, Mártinez MLÁ. 2019. Occurrence and human exposure assessment of perfluorinated substances in house dust from three European countries. Sci Total Environ 685:308-314. https://doi.org/10.1016/j.scitotenv.2019.05.463

Garnett J, Halsall C, Vader A, Joerss H, Ebinghaus R, Leeson A, Wynn PM. 2021. High Concentrations of Perfluoroalkyl Acids in Arctic Seawater Driven by Early Thawing Sea Ice. Environ Sci Technol 55(16):11049–59. <u>https://doi.org/10.1021/acs.est.1c01676</u>

Gewurtz, S.B., Bradley, L.E., Backus, S., Dove, A., McGoldrick, D., Hung, H. and Dryfhout-Clark, H. 2019. Perfluoroalkyl acids in Great Lakes precipitation and surface water (2006–2018) indicate response to phase-outs, regulatory action, and variability in fate and transport processes. Environmental Science & Technology, 53(15): 8543-8552. <u>https://doi.org/10.1021/acs.est.9b01337</u>

Giovanoulis G, Nguyen MA, Arwidsson M, Langer S, Vestergren R, Lagerqvist A. 2019. Reduction of hazardous chemicals in Swedish preschool dust through article substitution actions. Environ Int 130:104921. <u>https://doi.org/10.1016/j.envint.2019.104921</u>

Kim, Seung-Kyu, and Kurunthachalam Kannan. 2007. Perfluorinated Acids in Air, Rain, Snow, Surface Runoff, and Lakes: Relative Importance of Pathways to Contamination of Urban Lakes. Environ Sci Technol 41 (24):8328-8334. <u>https://doi.org/10.1021/es072107t</u>

Lee YM, Lee JY, Kim MK, Yang H, Lee JE, Son Y, Kho Y, Choi K, Zoh KD. 2020. Concentration and distribution of per- and polyfluoroalkyl substances (PFAS) in the Asan Lake area of South Korea. J Hazard Mater 381:120909. <u>https://doi.org/10.1016/j.jhazmat.2019.120909</u>

Li N, Ying GG, Hong H, Deng WJ. 2021. Perfluoroalkyl substances in the urine and hair of preschool children, airborne particles in kindergartens, and drinking water in Hong Kong. Environ Pollut 270:116219. <u>https://doi.org/10.1016/j.envpol.2020.116219</u>

Lin H, Taniyasu S, Yamashita N, Khan MK, Masood SS, Saied S, Khwaja HA. 2022. Per- and polyfluoroalkyl substances in the atmospheric total suspended particles in Karachi, Pakistan: Profiles, potential sources, and daily intake estimates. Chemosphere 288: 132432. https://doi.org/10.1016/j.chemosphere.2021.132432

Lin H, Taniyasu S, Yamazaki E, Wei S, Wang X, Gai N, Kim JH, Eun H, Lam PKS, Yamashita N. 2020. Perand Polyfluoroalkyl Substances in the Air Particles of Asia: Levels, Seasonality, and Size-Dependent Distribution. Environ Sci Technol 54(22):14182-14191. <u>https://doi.org/10.1021/acs.est.0c03387</u>

Lu GH, Jiao XC, Piao HT, Wang XC, Chen S, Tan KY, Gai N, Yin XC, Yang YL, Pan J. 2018. The Extent of the Impact of a Fluorochemical Industrial Park in Eastern China on Adjacent Rural Areas. Arch Environ Contam Toxicol 74(3):484-491. <u>https://doi.org/10.1007/s00244-017-0458-x</u>

MacInnis JJ, Lehnherr I, Muir DCG, St Pierre KA, St Louis VL, Spencer C, De Silva AO. 2019. Fate and Transport of Perfluoroalkyl Substances from Snowpacks into a Lake in the High Arctic of Canada. Environ Sci Technol 53(18):10753-10762. <u>https://doi.org/10.1021/acs.est.9b03372</u>

Morales-McDevitt ME, Dunn M, Habib A, Vojta S, Becanova J, Lohmann R. 2022. Poly- and Perfluorinated Alkyl Substances in Air and Water from Dhaka, Bangladesh. Environ Toxicol Chem 41:334-342. <u>https://doi.org/10.1002/etc.5255</u>

Padilla-Sánchez JA, Papadopoulou E, Poothong S, Haug LS. 2017. Investigation of the Best Approach for Assessing Human Exposure to Poly- and Perfluoroalkyl Substances through Indoor Air. Environ Sci Technol 51(21):12836-12843. <u>https://doi.org/10.1021/acs.est.7b03516</u>

Pike KA, Edmiston PL, Morrison JJ, Faust JA. 2021. Correlation Analysis of Perfluoroalkyl Substances in Regional U.S. Precipitation Events. Water Res 190:116685. https://doi.org/10.1016/j.watres.2020.116685 Rauert C, Harner T, Schuster JK, Eng A, Fillmann G, Castillo LE, Fentanes O, Villa Ibarra M, Miglioranza KSB, Moreno Rivadeneira I, Pozo K, Aristizábal Zuluaga BH. 2018b. Atmospheric Concentrations of New Persistent Organic Pollutants and Emerging Chemicals of Concern in the Group of Latin America and Caribbean (GRULAC) Region. Environ Sci Technol 52(13):7240-7249. https://doi.org/10.1021/acs.est.8b00995

Rauert C, Shoieb M, Schuster JK, Eng A, Harner T. 2018a. Atmospheric concentrations and trends of polyand perfluoroalkyl substances (PFAS) and volatile methyl siloxanes (VMS) over 7 years of sampling in the Global Atmospheric Passive Sampling (GAPS) network. Environ Pollut 238:94-102. <u>https://doi.org/10.1016/j.envpol.2018.03.017</u>

Seo S-H, Son M-H, Shin E-S, Choi S-D, Chang Y-S. 2019. Matrix-specific distribution and compositional profiles of perfluoroalkyl substances (PFASs) in multimedia environments. J Hazard Mater 364:19-27. https://doi.org/10.1016/j.jhazmat.2018.10.012

Sha B, Johansson JH, Tunved P, Bohlin-Nizzetto P, Cousins IT, Salter ME. 2022. Sea Spray Aerosol (SSA) as a Source of Perfluoroalkyl Acids (PFAAs) to the Atmosphere: Field Evidence from Long-Term Air Monitoring. Environ Sci Technol 56:228-238. <u>https://doi.org/10.1021/acs.est.1c04277</u>

Skaar JS, Ræder EM, Lyche JL, Ahrens L, Kallenborn R. 2019. Elucidation of contamination sources for poly- and perfluoroalkyl substances (PFASs) on Svalbard (Norwegian Arctic). Environ Sci Pollut Res Int 26(8):7356-7363. <u>https://doi.org/10.1007/s11356-018-2162-4</u>

Taniyasu S, Kannan K, Yeung LW, Kwok KY, Lam PK, Yamashita N. 2008. Analysis of trifluoroacetic acid and other short-chain perfluorinated acids (C2-C4) in precipitation by liquid chromatography-tandem mass spectrometry: comparison to patterns of long-chain perfluorinated acids (C5-C18). Anal Chim Acta 619(2):221-30. <u>https://doi.org/10.1016/j.aca.2008.04.064</u>

Wang Q, Ruan Y, Zhao Z, Zhang Lu, Hua X, Jin L, Chen H, Wang Y, Yao Y, Lam P KS, Zhu L, Sun H. 2022. Per- and polyfluoroalkyl substances (PFAS) in the Three-North Shelter Forest in northern China: First survey on the effects of forests on the behavior of PFAS. J Hazard Mater 427 (2022): 128157. <u>https://doi.org/10.1016/j.jhazmat.2021.128157</u>

Wang S, Lin X, Li Q, Liu C, Li Y, Wang S. 2022. Neutral and ionizable per-and polyfluoroalkyl substances in the urban atmosphere: Occurrence, sources and transport. Sci Total Environ 823 (2022): 153794. <u>https://doi.org/10.1016/j.scitotenv.2022.153794</u>

Wang X, Chen M, Gong P, Wang C. 2019. Perfluorinated alkyl substances in snow as an atmospheric tracer for tracking the interactions between westerly winds and the Indian Monsoon over western China. Environ Int 124:294-301. <u>https://doi.org/10.1016/j.envint.2018.12.057</u>

Winkens K, Giovanoulis G, Koponen J, Vestergren R, Berger U, Karvonen AM, Pekkanen J, Kiviranta H, Cousins IT. 2018. Perfluoroalkyl acids and their precursors in floor dust of children's bedrooms -Implications for indoor exposure. Environ Int 119:493-502. <u>https://doi.org/10.1016/j.envint.2018.06.009</u>

Winkens K, Koponen J, Schuster J, Shoeib M, Vestergren R, Berger U, Karvonen AM, Pekkanen J, Kiviranta H, Cousins IT. 2017. Perfluoroalkyl acids and their precursors in indoor air sampled in children's bedrooms. Environ Pollut 222:423-432. <u>https://doi.org/10.1016/j.envpol.2016.12.010</u>

Wu R, Lin H, Yamazaki E, Taniyasu S, Sörengård M, Ahrens L, Lam PKS, Eun H, Yamashita N. 2021. Simultaneous analysis of neutral and ionizable per- and polyfluoroalkyl substances in air. Chemosphere 280:130607. <u>https://doi.org/10.1016/j.chemosphere.2021.130607</u>

Xie Z, Wang Z, Magand O, Thollot A, Ebinghaus R, Mi W, Dommergue. 2020. A. Occurrence of legacy and emerging organic contaminants in snow at Dome C in the Antarctic. Sci Total Environ 741:140200. https://doi.org/10.1016/j.scitotenv.2020.140200

Yamazaki E, Taniyasu S, Wang X, Yamashita N. 2021. Per- and polyfluoroalkyl substances in surface water, gas and particle in open ocean and coastal environment. Chemosphere 272:129869. https://doi.org/10.1016/j.chemosphere.2021.129869

Yeung LWY, Dassuncao C, Mabury S, Sunderland EM, Zhang X, Lohmann R. 2017. Vertical Profiles, Sources, and Transport of PFASs in the Arctic Ocean. Environ Sci Technol 51(12):6735-6744. <u>https://doi.org/10.1021/acs.est.7b00788</u>

Young AS, Hauser R, James-Todd TM, Coull BA, Zhu H, Kannan K, Specht AJ, Bliss MS, Allen JG. 2020. Impact of "healthier" materials interventions on dust concentrations of per- and polyfluoroalkyl substances, polybrominated diphenyl ethers, and organophosphate esters. Environ Int 150:106151. <u>https://doi.org/10.1016/j.envint.2020.106151</u>

Yu N, Wen H, Wang X, Yamazaki E, Taniyasu S, Yamashita N, Yu H, Wei S. 2020. Nontarget Discovery of Per- and Polyfluoroalkyl Substances in Atmospheric Particulate Matter and Gaseous Phase Using Cryogenic Air Sampler. Environ Sci Technol 54(6):3103-3113. <u>https://doi.org/10.1021/acs.est.9b05457</u>

Zhao Z, Cheng X, Hua X, Jiang B, Tian C, Tang J, Li Q, Sun H, Lin T, Liao Y, Zhang G. 2020. Emerging and legacy per- and polyfluoroalkyl substances in water, sediment, and air of the Bohai Sea and its surrounding rivers. Environ Pollut 263 (Part A):114391. <u>https://doi.org/10.1016/j.envpol.2020.114391</u>

Zhao Z, Tang J, Mi L, Tian C, Zhong G, Zhang G, Wang S, Li Q, Ebinghaus R, Xie Z, Sun H. 2017. Perfluoroalkyl and polyfluoroalkyl substances in the lower atmosphere and surface waters of the Chinese Bohai Sea, Yellow Sea, and Yangtze River estuary. Sci Total Environ 599-600:114-123. <u>https://doi.org/10.1016/j.scitotenv.2017.04.147</u>

Zhen W, Xie Z, Mi W, Möller A, Wolschke H, Ebinghaus R. 2015. Neutral Poly/Per-Fluoroalkyl Substances in Air from the Atlantic to the Southern Ocean and in Antarctic Snow. Environ Sci Technol 49 (13):7770-775. <u>https://doi.org/10.1021/acs.est.5b00920</u>

Zheng G, Boor BE, Schreder E, Salamova A. 2020. Indoor exposure to per- and polyfluoroalkyl substances (PFAS) in the childcare environment. Environ Pollut 258:113714. https://doi.org/10.1016/j.envpol.2019.113714

Zhou J, Baumann K, Mead RN, Skrabal SA, Kieber RJ, Avery GB, Shimizu M, DeWitt JC, Sun M, Vance SA, Bodnar W, Zhang Z, Collins LB, Surratt JD, Turpin BJ. 2021. PFOS dominates PFAS composition in ambient fine particulate matter (PM_{2.5}) collected across North Carolina nearly 20 years after the end of its US production. Environ Sci Process Impacts 23(4):580-587. <u>https://doi.org/10.1039/D0EM00497A</u>

