13 Stakeholder Perspectives

This section identifies the concerns of stakeholders who have been or may be affected by PFAS contamination. In this section, we summarize many of the concerns that have been expressed by local communities, tribes, and environmental groups. Evaluation of exposure levels and potential human health consequences are of paramount concern to stakeholders.

<table>
<thead>
<tr>
<th>Section Number</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.1</td>
<td>Stakeholder Concerns</td>
</tr>
<tr>
<td>13.2</td>
<td>Specific Tribal Stakeholder Concerns</td>
</tr>
<tr>
<td>13.3</td>
<td>Stakeholder Resources</td>
</tr>
</tbody>
</table>

The term “stakeholder” is defined broadly by ITRC as members of environmental organizations, community advocacy groups, tribal entities or other citizens’ groups that deal with environmental issues, or a concerned citizen who is not a member of any organization or group. Public stakeholders, such as advocacy groups, often speak for the communities that are affected by environmental issues. In this document, a differentiation is made between public stakeholders and interested parties (responsible parties, state regulators, and owners and operators of contaminated sites).

Stakeholders share greater ownership of outcomes when they have the opportunity to influence site characterization, remedy selection, and long-term site management. Because PFAS are so abundant in consumer products, stakeholders are also concerned with the production and eventual use of these products and are seeking safer alternatives and sometimes outright bans. Environmental regulators and responsible parties also benefit from informed, constructive stakeholder involvement because it can help them make better decisions, reduce the likelihood of costly, time-consuming repeated work, and allow those in affected communities to have a voice in governing the long-term use of land, water, and other resources. Often, stakeholders such as long-time residents have unique site knowledge as well as a major stake in the remedial outcome.

Developing site-specific characterization and remediation strategies for communities and tribal organizations can be challenging, because there are many misconceptions about PFAS. The lack of scientific knowledge about many of these PFAS further enhances the need to educate the public. Therefore, early and effective community engagement emphasizing timely access to test data, transparency, and responsiveness is imperative. Community engagement may be able to address many stakeholders concerns and help to communicate risks. The ITRC Risk Communication Toolkit for Environmental Issues and Concerns includes information about stakeholder engagement and is published as a separate document. Section 14 addresses tools for PFAS-specific risk communication challenges, and provides some examples of PFAS risk communication issues.

This section identifies the concerns of stakeholders who have been or may be affected by PFAS contamination. Because PFAS are emerging contaminants and have been detected in ecological receptors (animals and plants, see sections 5.5 and 5.6) and blood serum in many humans (Section 7.1), there are many individuals who are potentially affected worldwide.

In this section, we summarize many of the concerns that have been expressed by local communities, tribes, and environmental groups. Evaluation of exposure levels and potential human health consequences are of paramount concern to stakeholders. The list of concerns below is not all inclusive, as developments in science and identification of contaminants in the environment are likely to lead to additional concerns. This list was developed from general research on PFAS, direct communication and involvement with environmental and community groups, a consultant for one of the tribes, and extensive review of news reports. This section is intended to highlight the concerns that have been expressed by various groups. It is not intended to be a definitive statement of the technical merits of those concerns.

USEPA conducted five community engagement events and one event with tribal representatives during the summer of 2018.
Meeting materials, information, and summaries of each event are provided on USEPA’s website: https://www.epa.gov/pfas/pfas-community-engagement. Series-specific lists of concern and associated social factors identified from presentations by public and community stakeholders during the USEPA PFAS community meetings held in 2018 are provided in the ITRC Risk Communication Toolkit for Environmental Issues and Concerns which is published as a separate document.

The following concerns were identified during preparation of this document, with details of these concerns in the following sections.

<table>
<thead>
<tr>
<th>Lack of comprehensive regulatory standards or advisories for thousands of PFAS for the following</th>
<th>PFAS in food packaging (13.1.12)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drinking water (13.1.1)</td>
<td></td>
</tr>
<tr>
<td>Environmental media other than drinking water (13.1.1.2)</td>
<td></td>
</tr>
<tr>
<td>Human consumption of food (13.1.1.3)</td>
<td></td>
</tr>
<tr>
<td>Ecological risk (13.1.1.4)</td>
<td></td>
</tr>
</tbody>
</table>

| Desire for one standard or screening level for PFAS (13.1.2) | Potential PFAS contamination in recycling, compost, and fertilizer (13.1.13) |

| Lack of Occupational standards (13.1.3) | Lack of disclosure by product manufacturers (13.1.14) |

| Lack of comprehensive monitoring information (13.1.4) | Limited availability of information on the health effects of PFAS (13.1.15) |

| Need to apply a precautionary approach in decision making (13.1.5) | Responsibility for sampling and treatment on private property (13.1.16) |

| Safety of short-chain substitutes (13.1.6) | The potential for PFAS emissions from cleanup methods (13.1.17) |

| Contamination from AFFF release sites (13.1.7) and unused AFFF disposal (13.1.8) | Lack of scientific evidence that current PFAS treatment and disposal methods and remedies are fully protective of human and ecological health and prevent toxic emissions (13.1.18) |

| Duty to warn AFFF responders (13.1.9) | Stormwater and PFAS manufacturing discharges that may contain PFAS (13.1.19) |

| Limitations in sampling and analysis methods (13.1.10) | Psychological effects (13.1.20) |

| Limited programs for health monitoring and blood testing (13.1.11) | Economic consequences of local PFAS contamination (13.1.21) |

Stakeholders who use this document should consider that much of the information is very technical. Nevertheless, it aims to lay a framework by which to understand this set of compounds, the foundational nature of the science, and many of the uncertainties.

13.1 Stakeholder Concerns

13.1.1 Lack of Comprehensive Regulatory Standards or Advisories for Thousands of PFAS

This section discusses the lack of advisory standards or screening values for various environmental media and exposure pathways.

13.1.1.1 PFAS in Drinking Water

As of December 2021, USEPA has set health advisories for only two of the thousands of PFAS compounds: PFOA
(perfluorooctanoic acid) and PFOS (perfluorooctane sulfonic acid). The lifetime health advisory has been set at 70 nanograms per liter (ng/L or parts per trillion) for the combined concentrations of PFOA and PFOS in drinking water.

Several states have rules on these and other PFAS compounds, but the majority of PFAS compounds are not included in any of the states’ regulations. Information about available current regulatory standards and guidance values for PFAS in drinking water are provided in Section 8, with a summary table linked on the PFAS fact sheet page.

Stakeholders are concerned because the health consequences of these other compounds remain uncertain. Firm conclusions relating individual PFAS compounds to specific health outcomes remain elusive (Guelfo et al. 2018). Information about health impacts for other PFAS is provided in Section 7.1.

13.1.1.2 PFAS in Environmental Media Other than Drinking Water

With the exception of regional soil screening levels for PFOS, PFOA, and PFBS, there are no federal standards or screening levels for evaluating environmental media (air, soil, and surface water and groundwater not used for drinking) and limited federal requirements that compel such monitoring at the time of publication. USEPA has developed interim recommendations for screening and remediation of groundwater for PFOS and PFOA at CERCLA and RCRA regulated sites (USEPA 2019). Section 8 includes information about regulations, guidance, and advisories for PFAS, including a summary table of available current regulatory standards and guidance values for PFAS in groundwater, drinking water, surface water, effluent (wastewater), and soil linked on the PFAS fact sheet page.

There are few limits by the federal and most state governments on PFAS in biosolids being applied to land for food and/or nonfood crops. PFAS, such as PFOA and PFOS, have been detected in biosolids produced at wastewater treatment plants (WWTPs), and in soil, surface waters, and leachate from landfills. WWTP biosolids are commonly applied to land as a soil amendment. Stakeholders are concerned about uptake by crops such as corn, hay, and soybeans. Section 2 introduces PFAS sources at landfills and WWTPs, and Section 5.6 and Section 6.5.1 discuss plant uptake of PFAS.

There are few regulatory or guidance limits for PFAS in surface water that may affect fish and consumers of fish. In addition, PFAS in surface water also creates an exposure pathway that potentially affects ecological and human health. For more information on PFAS in surface water, see Section 16.

While recognizing that drinking water is the dominant exposure pathway, Vestergren and Cousins (2009) identified that PFAS impacts to other media need to be considered because “there is a clear need of investigations of how to remediate the hotspot areas with focus on the unsaturated zone,” because “PFAS that are pooled in the unsaturated zone will continue to infiltrate and spread from contaminated areas as long as the source is not removed, or infiltration of precipitation is inhibited.”

13.1.1.3 Human Consumption of Food

Many stakeholders want clear advisories or standards on PFAS in food due to the occurrence of PFAS in a variety of food. In Europe important sources of human exposure to PFOA and PFOS have been found to include the consumption of fish, meat, and eggs (EFSA 2018). The US Food and Drug Administration (FDA) has published information on their PFAS studies on their website (USFDA 2019). Few screening levels or advisories have been posted; for example, Maine has developed screening levels for fish for PFBS, PFOS, and PFOA, and for milk and beef for PFOS (ME DEP 2021). Further information about development of standards for food consumption is found in Section 8.2.2.11. PFAS are found in a variety of foods, including homegrown produce and wildlife. Some areas of concern regarding foods include the following:

- PFAS have been found in food purchased at stores. Some occurrence information for foods collected as part of the FDA’s Total Diet Study is published in Genuaidi et al. (2021).
- Some states have issued fish consumption advisories for specific lakes and rivers after tests confirmed the presence of PFAS in surface water. Section 15.3 includes a case study example about a recently enacted fish consumption advisory by the New Jersey Department of Environmental Protection.
- In February 2018, the Environmental Protection Authority of Victoria, Australia, “assessed waterfowl from three wetlands to better understand the extent and distribution of PFAS contamination ahead of the duck hunting season. PFAS was detected in waterfowl from all three wetlands.” As a result, health risk assessments were undertaken and health advisories were issued (Environmental Protection Authority Victoria 2019), p.1).
- In Wisconsin, the Department of Natural Resources (DNR) recommended not consuming the liver of deer killed within a 5-mile radius of an industrial site where elevated levels of PFOS were found. “DNR And DHS Issue Do Not Eat Advisory for Deer Liver In Five-Mile Area Surrounding JCI/Tyco Site In Marinette”, September 15,
Alaska Community Action on Toxics (ACAT) (Byrne 2009) reported that “A study (by Martin et al. 2004) on the presence of PFOS in the livers of arctic animals revealed elevated PFOS levels in almost all species studied.” Furthermore, it reported that “In a recent study (Ostertag et al. 2009) of foods consumed by a Canadian Inuit population, traditional foods were more widely contaminated and contained higher concentrations of PFCs [PFAS] than nontraditional foods. Caribou had the highest concentrations of perfluorinated compounds (PFCs), including PFOS.” At the request of the Yupik people of St. Lawrence Island, the ACAT is conducting a study to determine the safety of the traditional foods they eat for subsistence (Byrne 2009).

13.1.4 Ecological Risk

There is wide stakeholder concern that ecological receptors have been or will be harmed by releases of PFAS to the environment (Section 7.2). Currently, there are no federal risk-based ecological guidelines or thresholds for environmental media. Ecotoxicity studies are generally limited to a relatively small number of PFAS compounds (typically PFOA and PFOS). Stakeholders are asking for expanded studies in this field to evaluate additional PFAS, including short-chain precursor compounds as well as “next-generation” substitute compounds. Several states have established some criteria that are intended to protect aquatic organisms in their respective surface waters (see Section 16.3).

13.1.2 Desire for One Standard or Screening Level for PFAS

Among stakeholders there is a difference of opinion regarding how standards for PFAS should be established. Many stakeholders believe that PFAS should be treated as a class of chemicals (Kwiatkowski et al. 2020), similar to how PCBs or dioxin are currently regulated. In 2021, Vermont concluded that further information is needed to evaluate the feasibility of regulating PFAS in drinking water as a class (VT ANR 2021). Section 7.1 includes information about approaches for assessing toxicity of PFAS mixtures.

Given the lack of toxicological information for the vast majority of PFAS, when even less is known about the potential additive and synergistic effects associated with PFAS mixtures (see Section 7.1.5), many stakeholders support evaluating the mass of total PFAS as a preferred screening method, rather than limited compound-specific testing using target analyte lists (CSWAB 2018). However, it is noted that given the lack of a method to test for total PFAS (see Section 13.1.10), screening might need to be completed using a method such as the TOP assay, total organic fluorine, or non-target analysis as described in Section 11. For example, the Conservation Law Foundation in New England put forth a petition requesting that PFAS in drinking water be regulated as a group with a treatment technique drinking water standard. See https://www.nhpr.org/post/activists-ask-new-england-states-regulate-pfas-chemicals-class#stream/0 and https://www.mass.gov/lists/pfas-information-a-petition-for-rulemaking-to-establish-a-treatment-technique-drinking-water. However, other stakeholders and some interested parties do not support treating PFAS as a class of chemicals, because some PFAS, such as certain fluoropolymers, like PTFE, might need less toxicological information because they are unable to enter cells, they are not mobile in the environment, they do not bioaccumulate, and they are therefore not available to cause adverse health effects (Henry et al. 2018), although this issue needs further study (Lohmann et al. 2020). See also Section 2.2.2.1.

13.1.3 Lack of Occupational Standards

There are few standards or guidance values for occupational exposure for PFAS. NIOSH identified occupations that might have a higher potential exposure to PFAS, and identified occupational exposure studies and other research (NIOSH 2021). Stakeholders are concerned that paper mills and wastewater treatment plants where PFAS have been documented in indoor air, and manufacturers and industrial users of PFAS, do not have specific occupational standards for all of the PFAS that the workers might be exposed to during workplace activities.

13.1.4 Lack of Comprehensive Monitoring Information

Many stakeholders are concerned that most individuals and communities do not have any testing for PFAS. Moreover, there is no comprehensive federal requirement for PFAS testing of all drinking water systems and private wells. Based on publicly available data, there is an estimate that up to 80 million people in the United States might have drinking water with PFOA and/or PFOS concentrations greater than 1 nanogram per liter (Andrews and Naidenko 2020).

Limited testing has occurred in some public water systems, and USEPA’s Unregulated Contaminant Monitoring Rule (UCMR) and other regulatory programs have provided more (see Section 8). Some significant points regarding the status of a comprehensive monitoring effort follows:

• As described in Section 8.2.2.4, the third round of USEPA’s required monitoring program (UCMR3), which occurred between 2013 and 2015, sampled for only six of the thousands of PFAS. UCMR3 was limited to public water systems (PWS) serving more than 10,000 people and a limited number of smaller systems, but smaller PWSs and private wells were not included. More information about the UCMR3 data is included in Section 8.2.2.4. From this data set, it was estimated that approximately 6 million residents of the United States have drinking water that exceeds the health advisory for PFOA or PFOS, or both (APHA 2016).

• Sampling for UCMR4 (USEPA 2016), which occurred between 2018 and 2020, did not include any PFAS in its analyte list (USEPA 2020). Many stakeholders are concerned that an opportunity to better understand the magnitude of PFAS contamination on PWSs was not taken.

• Summarizing information about the Unregulated Contaminants Monitoring Rule (UCMR), Siros (2018) stated, “America’s Water Infrastructure Act of 2018 ... requires drinking water systems serving more than 3,300 people to test for unregulated contaminants pursuant to USEPA’s (UCMR). Prior to this new law, only drinking water systems that served more than 10,000 people were required to monitor for unregulated contaminants. ...Th[e] new testing requirement, which goes into effect in 2021, is expected to add more than 5,000 drinking water systems to the list of systems that are required to test for these unregulated contaminants.” UCMR5, scheduled for 2023–2025, is going to test for 29 PFAS chemicals (for which there is a validated USEPA testing method) in systems serving more than 3,300 people using lower detection limits than previous UCMRs (USEPA 2021).

• Some states (for example, New Hampshire and Vermont) have initiated testing of private wells in certain locations where there is a high potential for PFAS contamination, and require testing of public water systems subject to maximum contaminant level (MCL) regulations. The Washington State Department of Health announced that it will be conducting additional testing for PFAS at several hundred untested water systems. The state of Michigan is also testing all public community water systems for PFAS (see https://www.michigan.gov/pfasresponse/0,9038,7-365-88059—,00.html).

13.1.5 Need to Apply a Precautionary Approach in Decision Making

Given the lack of toxicological data for the great majority of PFAS compounds and mixtures, many stakeholders want a precautionary approach to the use, treatment, and analysis of PFAS-containing chemicals. This precautionary approach presumes compounds of similar structure may be expected to have similar modes of action and pose a similar risk to human health and the environment, lacking evidence to the contrary.

13.1.6 Safety of Short-chain Substitutes

Many stakeholders are concerned with the use of substitute short-chain PFAS. After concerns arose that PFOA and PFOS (both long-chain PFAS) have health risks at very low concentrations, industry began to substitute them with shorter chain PFAS (see Section 2.4). Although some short-chain PFAS appear to be less bioaccumulative, the publicly available data are limited. Some short-chain PFAS can be persistent, and tend to be more water-soluble and more mobile than long-chain PFAS. Because of their greater water solubility, studies indicate short-chain substitutes are more readily taken up by plants than longer chain PFAS, including food crops (Higgins 2017). In their Interim Chemical Action Plan for PFAS, the Washington State Department of Ecology and Washington State Department of Health (2019 p. 1) states that short-chain PFAS are difficult to remove from water, noting further, “Without additional health and safety data, it is impossible for us to evaluate whether short-chain replacements are safe substitutes. If environmental exposures to short-chain PFAS are found to pose health risks to people or the environment, mitigation will be difficult and expensive.” Precursor compounds for some short-chain PFAS are also of interest in future monitoring studies; for example, perfluoro-1-butane-sulfonamide (FBSA, a precursor to PFBS), has been documented with high detection frequency (32 out of 33 samples) in fish from North America (Chu et al. 2016; Ericson, Joosten, and Yeung 2017). Finally, in the Helsingør Statement (Scheringer et al. 2014) and the Madrid Statement on Poly- and Perfluoroalkyl Substances (Blum et al. 2015), scientists and other professionals expressed concerns about the embrace of short-chain PFAS as preferable replacements for long-chain PFAS.

13.1.7 Contamination from AFFF Release Sites

Many stakeholders believe that all potential AFFF release sites should be investigated, and where necessary, potential exposure should be mitigated. Investigations to date have identified the use of AFFF as one of the main sources of PFAS releases to the environment, and AFFF releases have been responsible for PFAS contamination of multiple drinking water sources. Although AFFF foams typically contain less than 2% total PFAS, thousands of gallons of foam mixture may be applied during a given event, and the concentrations of concern for PFAS are very low (below 100 parts per trillion (ppt)). Typical locations where AFFF is stored and used include civilian airports, military bases, chemical plants, municipal fire departments, oil refineries, bulk fuel storage facilities and terminals, and crash sites. AFFF was used abundantly for training
purposes at military bases with flight operations and at civilian airports. Additional information is presented in the ITRC AFFF fact sheet and in Section 3.

13.1.8 Contamination from Unused AFFF Disposal

Stakeholders are concerned that incineration of unused AFFF is not always specifically regulated with PFAS-specific emission conditions and limits, and that incineration may generate dangerous byproducts (see Section 3.10 on AFFF Disposal; USEPA 2020; Earthjustice 2020). The U.S. military indicated plans to collect and destroy unused firefighting foam that contains PFOS and PFOA (USDOD 2018). In a 2017 request for AFFF disposal research project proposals (U.S. Air Force 2017), the Air Force acknowledged that the foam, which was designed to resist extremely high temperatures, is difficult to burn and that “the high-temperature chemistry of PFOS and PFOA has not been characterized, so there is no precedent to predict products of pyrolysis or combustion, temperatures at which these will occur, or the extent of destruction that will be realized.” Stakeholders are concerned that there are no federally mandated protocols that require incineration to reach certain temperatures to specifically target PFAS. (See https://theintercept.com/2019/01/27/toxic-firefighting-foam-pfas-pfoa/)

The National PFAS Contamination Coalition (an assembly of stakeholder groups from across the U.S.) opposes incineration (and similar thermal treatment technologies) for disposal of PFAS-contaminated wastes and collected PFAS products because stakeholders are concerned that thermal treatment technologies may not be specifically permitted to treat PFAS, and that demonstration is needed that treatment will fully destroy PFAS, that is, reduce the molecules to carbon, fluoride salts, and/or other constituents (National PFAS Contamination Coalition Statement on Incineration of PFAS – National PFAS Contamination Coalition (pfasproject.net)). See Section 13.1.18 below.

The USEPA’s Interim Guidance on Destroying and Disposing of Certain PFAS and PFAS-Containing Materials That Are Not Consumer Products (USEPA 2020) indicates that thermal treatment (which includes incineration) is commercially available and potentially has the capability to destroy PFAS or manage the migration of PFAS in PFAS-containing materials, but that further research activities are needed. Some facilities in the United States have been permitted by state regulatory agencies for the thermal treatment of PFAS.

The Foam Exposure Committee (FEC), a subgroup of the Fire Department Safety Officers Association (FDSOA 2021), whose objective is to reduce firefighter/first responder exposures to PFAS in firefighting foams, reports that the absence of federal and state regulations addressing disposal provides more opportunities for fire departments to expose their firefighters and contaminate their own communities with AFFF products. Current regulatory programs that address use and disposal of AFFF are provided in Section 13.1.9.

13.1.9 Duty to Warn AFFF First Responders

Aside from standard workplace safety requirements regarding hazardous materials right-to-know, stakeholders are concerned that there has been no legal duty to warn or to require notice of hazards to first responders who handle AFFF. Several studies have concluded that some PFAS were elevated in the blood of first responders.

- The New Hampshire Department of Health and Human Services PFC Blood Testing Program (NH DHHS 2016) results indicate the geometric mean levels of PFOS and PFHxS in the blood serum of firefighters were elevated versus the geometric mean levels of those who had not worked as firefighters. Numerous other studies indicated that blood serum levels were elevated in firefighters (LeMasters et al. 2006; Jin et al. 2006; Dobraca et al. 2015). It is difficult to tease out whether these higher levels are related to exposures to AFFF, PFAS in firefighter gear (clothing), consumption of water from PFAS-contaminated drinking-water wells in affected communities, especially those that may be located near training facilities that have used AFFF, or other sources.
- IPEN (International Pollutants Elimination Network) released a report that presents information from recent studies that firefighters using AFFF have elevated blood levels of both PFHxS and PFOS; see also NIOSH (2021) for links to additional research. Earlier IPEN reports describe fluorine-free firefighting foam alternatives that can replace uses of toxic fluorinated firefighting foams (IPEN 2018, 2019). The FEC recommends replacing older stocks of AFFF with fluorine-free foam solutions (FDSA 2021).

13.1.10 Limitations in Sampling and Analysis Methods

Stakeholders are concerned that current PFAS site investigations may not adequately define the types and total mass of PFAS present, due to limitations in analytical methods (see Section 11) that are still evolving. Moreover, the PFAS family of compounds contains thousands of chemicals, but standard analytical methods can identify only a fraction of these
A related concern is that the specification for shorter chain AFFF published by the Department of Defense (USDOD 2018; NAVSEA 2017) still allows concentrations of PFOA and PFOS up to 800 ppb in AFFF concentrate, because that is the lowest concentration of either PFOA or PFOS that can be measured in the concentrate with current analytical methods. This is because the overall high concentrations of the many chemicals in the AFFF concentrate “swamp” the lab instrument, interfering with its ability to detect any individual compound except when it is present at high concentrations. The DOD has recently published a draft analytical method, DOD AFFF01, to quantify PFOA and PFOS with a limit of quantitation of less than 25 ppb (Willey 2021). The modern short-chain AFFF formulations are fluorotelomer-based, so PFOS (and other PFSAs) should not be present and PFOA may be present only as contamination from the production process (as discussed in Section 3.1), but without analytical methods to prove this, users cannot know for certain if the new AFFF products are PFOS- and PFOA-free. The ITRC AFFF fact sheet and Section 3 include more information about AFFF specifications.

13.1.11 Limited Programs for Health Monitoring and Blood Testing

Some PFAS (for example, PFOA, PFOS) bind to proteins in the blood, making blood testing a means of investigating human exposure to PFAS (see Section 7). Many communities where PFAS have been detected have asked that the government establish a program for blood serum testing and long-term health monitoring so that they can better understand any health risks associated with PFAS exposure. ATSDR established a multi-site study with seven partners across the country to better understand the connection between PFAS exposures and health effects (ATSDR 2020).

Some states have provided limited testing on people in high-impact areas. For example, New Hampshire provided blood serum testing for people who worked on, lived on, or attended childcare on an AFFF-impacted site and were exposed to contaminated drinking water (NH DHHS 2016). New Hampshire also performed blood tests in selected towns where people used private wells that tested above health advisories for PFOA and PFOS. However, many state and local governments are wary of blood testing programs because there is no correlation between the PFAS level in blood serum and any definitive health effects. People who participate in such tests are usually informed of their results and provided context about how they compare with national and location-specific averages. Only limited long-term programs have been established to monitor the health outcomes of exposed populations (for example, C8 Science Panel (C8 Science Panel 2020). If there is no assistance from the government, many community members cannot afford to have their blood tested.

13.1.12 PFAS in Food Packaging

Many stakeholders are concerned that food packaging containing PFAS leaches into food. Food packaging, such as bowls, plates, clamshells, trays, and pizza boxes, often includes PFAS for anti-grease resistance, and PFAS is sometimes used in the molding process to manufacture paper plates and containers. A 2008 FDA study found that “fluorochemical paper additives do migrate to food during actual package use,” and oil and grease “can significantly enhance migration of a fluorochemical from paper” (Begley et al. 2008).

There is only limited peer-reviewed information regarding PFAS transfer to food. One study documented that 6:2 FTOH moves from dishwasher or containers into food (Yuan et al. 2016). A Canadian analytical lab found that PFBA moves from cupcake liners into cupcakes (CEH 2018).

The FDA has approved 20 next-generation, short-chain PFAS for coating paper and paperboard used to serve food. The FDA Effective Food Contact Substance Notifications database is available online (FDA 2018). Concerns have been raised that these compounds have not been adequately tested for human impact. Because of trade secrecy laws with regard to patents, the government does not publicly disclose the identity of the specific chemicals in food packaging. However, according to The Intercept (Lerner 2016), in documents filed with the USEPA, under TSCA section 8(e) requirements, DuPont (2010) reported that substitute PFAS used to produce food contact paper could pose a “substantial risk of injury,” including cancerous tumors in the pancreas and testicles, liver damage, kidney disease, and reproductive harm. For more information about FDA’s PFAS activities and food contact materials (FCM) PFAS phaseouts, please see Section 8.2.

Although there are no enforceable PFAS limits in food or water at the federal level as presented above in Section 13.1.1.3, some states and cities are moving forward with bans. Several states, including Washington, Minnesota, Maine, New York, and Vermont, have enacted laws to ban PFAS use in some food packaging. See Section 8.2 and the regulatory programs table (coming soon) for a summary of regulatory programs. Stakeholders are concerned because not only does PFAS in food packaging pose potential risks to consumers of the food, but the used packaging may end up in compost or landfills. Compost is eventually applied to soil and PFAS are potentially transferred to certain food crops, and may leach to
and Prevent Toxic

technologies are common remediation approaches for contaminated media and waste, limited information exists on the chemicals or their byproducts back into the environment.” Additionally, USEPA has confirmed that while “Thermal treatment options for getting rid of PFAS do not eliminate these contaminants but rather end up just returning either the same destruction. Tasha Stoiber, EWG senior scientist and primary author of the study, found that “The three common ‘disposal’ contamination Working Group (EWG) (https://www.ewg.org/news-insights/news-release/study-disposal-pfas-waste-increases-emissions).

13.1.13 Potential PFAS Contamination in Recycling, Compost, and Fertilizer

Carpeting, furniture, and numerous other items containing PFAS are often recycled. There is concern that the recycled materials are often used in products where the consumer has no way of knowing whether it is has PFAS contamination. Biosolids from wastewater treatment plants are used in some composts and fertilizers and PFAS sampling may not be part of the screening process for these products. However, this is changing; New Hampshire and Maine both require testing. Additionally, stakeholders are calling for more testing and regulation for land-applied or disposed paper mill waste due to potential PFAS impacts. Stakeholders are concerned that composting of paper mill waste to make fertilizer, which, for example, is still done in Michigan, should get more attention. It is difficult to know which mills make “waterproof” or food contact papers that contain PFAS.

13.1.14 Lack of Disclosure by Product Manufacturers

Some stakeholders are concerned that chemical and product manufacturers are not required to disclose when they sell, make, or use PFAS in their products because some formulations are proprietary and may not be listed on a Safety Data Sheet. For example, sturdy, waterproof, and heat-resistant products are produced for the construction industry. Additionally, there is lack of disclosure and transparency concerning the composition of AFFF, because AFFF suppliers claim that formulations are proprietary.

13.1.15 Limited Availability on Information on the Health Effects of PFAS

Some stakeholders are concerned that politics may delay or even prevent the full disclosure of PFAS toxicity information. For example, the 2018 release of ATSDR’s Draft Toxicological Profile for PFAS was reportedly delayed because of concerns about the public response. This example, if replicated, may lead to distrust and reduce the efficacy of risk communication. Additionally, collected health data may not be clearly and fully shared or explained to stakeholders.

13.1.16 Responsibility for Sampling and Treatment on Private Property

When off-site contamination is suspected or discovered, stakeholders believe that the responsible parties should be accountable for establishing an entire program to deal with the problem. This includes sampling and analysis, disclosure of PFAS content, health monitoring, and if appropriate, remediation and mitigation. Upon detection of PFAS above state or USEPA limits, stakeholders maintain that responsible parties should be required to provide affected residents with alternative water supplies. Additionally, stakeholders believe that the cost of the program, including long-term treatment and monitoring, should be borne by responsible parties.

13.1.17 Potential PFAS Emissions from Cleanup Methods

Stakeholders believe that treatment systems (from large public water treatment systems to small private point-of-use systems) should be monitored for effectiveness, as the type and frequency of monitoring may vary for all systems. There is also concern that disposal or regeneration of GAC canisters, resins, and byproducts will add contaminant loads of PFAS to the air, land, and water. Stakeholders are concerned that companies that thermally treat spent carbon filters that contain PFAS do not provide publicly accessible information that documents full destruction of all PFAS; some companies claim all PFAS are destroyed, yet the research appears to be focused on targeted PFAS (for example, PFOS and PFOA) destruction. More concerns about thermal treatment are discussed in Section 13.1.8, with further information provided in Section 12.4.

13.1.18 Lack of Scientific Evidence that Current PFAS Treatment and Disposal Methods and Remedies Are Fully Protective of Human and Ecological Health and Prevent Toxic Emissions

Historically, the three standard practices for PFAS waste management are landfilling, wastewater treatment, and incineration. Stakeholders’ concerns with these disposal practices are highlighted in a study sponsored by the Environmental Working Group (EWG) (https://www.ewg.org/news-insights/news-release/study-disposal-pfas-waste-increases-contamination). One of the conclusions of that study is that all three methods have been found to not effectively contain or destroy PFAS. Tasha Stoiber, EWG senior scientist and primary author of the study, found that “The three common ‘disposal’ options for getting rid of PFAS do not eliminate these contaminants but rather end up just returning either the same chemicals or their byproducts back into the environment.” Additionally, USEPA has confirmed that while “Thermal treatment technologies are common remediation approaches for contaminated media and waste, limited information exists on the
economy, potential atmospheric emissions, operational conditions, costs, etc. for thermal treatment technologies specifically targeted for PFAS” (Mills et al. 2020).

Additionally, USEPA stated that “Research on thermal stability of PFAS compounds, the ability to fully capture and identify PFAS compounds and their thermal decomposition byproducts, and the efficacy of emission control technologies are areas of targeted research. These efforts, in cooperation with states and industries, [are] aimed at proper disposal of PFAS-laden wastes without media-to-media transfer or environmental release” (USEPA 2019). In USEPA’s Interim Guidance (USEPA 2020), they identified areas for further study to assess the efficacy of destruction and disposal of PFAS-containing materials (that are not consumer products) to help protect public exposure to PFAS.

An example that demonstrates the stakeholders’ concerns about adequate protection provided by disposal options is the Holston Army Ammunition Plant (Holston) in Tennessee. In a July 16, 2019, letter to USEPA Region 4 Administrator Mary Walker (https://cswab.org/wp-content/uploads/2019/07/Holston-Citizen-Petition-Region-4-PFAS-July-2019.pdf), several environmental groups stated that Holston will present a risk to human health and the environment by burning polymer-bonded explosives (PBXs) containing PFAS. The groups cited a recent decision by the neighboring State of Kentucky to prohibit the Blue Grass Army Depot from open-air burning or detonation (OB/OD) of “munitions wastes that are a potential source of Per- and polyfluoroalkyl substances (PFAS), including Teflon, Viton, and Viton-A. This includes both short and long chain PFAS.” Both bases are located in USEPA Region 4. The groups stated: “Open air burning and detonation do not provide either sufficient or sustained temperatures times to achieve destruction. OB/OD activities at Holston are very likely resulting in the ongoing release and dispersion of PFAS to the environment, posing a potentially substantial health risk to workers and residents.”

13.1.19 Stormwater and PFAS Manufacturing Discharges that May Contain PFAS

PFAS, including PFOA, have been detected at the storm drain outfalls at active facilities. Stakeholders are concerned that most NPDES effluent permits do not require PFAS sampling and the magnitude of PFAS concentrations in such discharges remains unknown. Older and inactive facilities’ discharge areas, many of which have not been sampled for PFAS, may also act as long-term sources of stormwater and/or groundwater contamination due to residual PFAS in soil at stormwater discharge areas.

13.1.20 Psychological Effects

It was reported at one USEPA community forum that children in some communities are scared to drink water. See the USEPA community meetings information provided on USEPA’s website: https://www.epa.gov/pfas/pfas-community-engagement. This has occurred in communities where contaminated drinking water supplies have the effect of deterring children from drinking clean water. Additionally, blood level values have become an identity, and there are pictures of people holding up signs identifying their blood levels.

13.1.21 Economic Consequences of Local PFAS Contamination

Individuals have voiced concerns about significant economic consequences on property values and businesses. See the USEPA community meetings information provided on USEPA’s website: https://www.epa.gov/pfas/pfas-community-engagement. In one case in Massachusetts, the Board of Health added PFAS to the list of substances homeowners with private wells in certain areas of town must test for before selling their homes (Town of Harvard, MA 2020). In New Jersey, PFOA, PFOS, and PFNA were added to a list of chemicals that private well owners must test for prior to selling their homes under the NJ Private Well Testing Act. This also applies to landlords who rent homes with private wells (see https://www.nj.gov/dep/rules/adoptions/adopt_20200601a.pdf). In another instance, because PFAS was detected in water used by dairy cattle, the farmer had difficulty selling the milk products. Stakeholders are particularly concerned about facilities located in economically disadvantaged communities. These communities need the economic benefits of a facility but have few resources to demand enough testing of air emissions and of potential health impacts on the community.

13.2 Specific Tribal Stakeholder Concerns

Tribes share many concerns with other stakeholders; however, they differ from other stakeholders in several key aspects. The 573 federally recognized tribes are each culturally, governmentally, and socially unique. Some tribes view any level of contamination of their lands and natural and cultural resources as unacceptable. Many tribes have culturally significant or sacred areas, which may include springs, mountains, hunting areas, plant-gathering areas, or burial sites. When culturally significant or sacred areas are affected, traditional methodologies that nontribal environmental professionals rely on (such
as the applicable exposure scenarios or factors for a risk assessment) may not be sufficient to portray the effect to a tribe. For example, some plants and animals can have tremendous cultural or religious importance to a tribe, including birds and feathers, game animals, and herbs. Many tribes sustain themselves through hunting, fishing and gathering of foodstuffs. Additionally, many tribal cultural ceremonies include the use of water. Other areas of difference include diet (for example, some tribes consume more fish per capita) and growing crops or grazing animals on areas fertilized by biosolids from wastewater treatment facilities.

Tribes are sovereign entities that have established government-to-government relationships with federal, state, and local governments—relationships that must be recognized in the decision-making process. When a PFAS-contaminated site affects a tribe, the project timeline must include tribal approvals in addition to other typical agency approvals. Sampling, research, and services on tribal lands generally require institutional review board or tribal council approval. Each sovereign nation operates differently, ranging from tribes that have no research capacity to tribes that have a full review board with a formal application process. The initial steps in the approval process may include drafting a proposal, preparing a poster or podium presentation, and presenting to the tribal government.

Once tribal approval is granted and the project commences, the practitioner must obey tribal protocol with respect to cultural practices. The tribe may reserve the right to retain the findings in the case of exploratory research and restrict publication. Regulatory findings for water and soil concentration, level of treatment, and monitoring are first reported to the tribe’s department of environmental quality or natural resources and then forwarded to state environmental organizations and USEPA.

Most of the tribal concerns are listed in Section 13.1. However, as mentioned above, there may be some distinctions that are important to tribes:

- PFAS in surface waters and lakes may have a higher level of concern when they are used for fishing, given that tribal members rely on these water bodies.
- Drinking water and irrigation water in the arid Southwest are limited, and there is heightened concern that tribes will be unduly impacted if drinking or irrigation water is contaminated.
- Tribal lands are often close to installations that used AFFF (notably DOD) or other industrial sources of PFAS (manufacturers, leather tanneries).
- Where biosolids have been applied to tribal farmlands or grazing lands, there is a need to survey these tribal lands. In some cases, cities may have paid tribal communities to spread biosolids from WWTPs that may have been contaminated with PFAS.
- Activities on and near tribal lands may have involved use of PFAS-containing chemicals that could impact tribal members working in these facilities through inhalation and dermal exposure.
- Landfills on tribal lands that accepted outside waste need to be sampled for PFAS contamination, which may be in the landfill leachate. Companies that paid a fee to the tribes to use their land managed many of these landfills. Although most required sampling, often the sampling plans did not include sampling landfill leachate for PFAS.
- A big issue facing tribes is that tribal environmental offices and budgets are typically small, and they do not have the people or money to perform appropriate site investigations to determine if they have PFAS in their community.

13.3 Stakeholder Resources

Below are a number of resources for communities available at the time of publication. These resources are websites of major environmental organizations and projects that specifically deal with PFAS. These groups aim to help environmental and community groups to better understand the issues and science around PFAS. These websites have not been reviewed for accuracy or to determine if they are up to date.

https://pfasproject.com (A project of Northeastern University)

https://earthjustice.org/features/breaking-down-toxic-pfas

http://www.testingforpease.com

https://toxicfreefuture.org/science/chemicals-of-concern/pfas-nonstick-nightmare/

http://gatehousenews.com/unwellwater/

https://www.ewg.org

PFASCentral.org

https://greensciencepolicy.org/highly-fluorinated-chemicals/

https://www.sixclasses.org/videos/highly-fluorinated-chemicals

https://www.nrdc.org/experts/anna-reade/epa-finds-replacements-toxic-teflon-chemicals-are-also

https://silentspring.org/research-area/about-highly-fluorinated-chemicals-pfass

https://clu-in.org/contaminantfocus/default.focus/sec/Per_and_Polyfluoroalkyl_Substances_(PFASs)/cat/Policy_and_Guidance/

https://theintercept.com/2019/09/19/epa-new-pfas-chemicals/

https://www.ewg.org/pfaschemicals/what-are-forever-chemicals.html

https://pfas-exchange.org

https://silentspring.org/project/women-firefighters-biomonitoring-collaborative

https://www.epa.gov/pfas/basic-information-pfas

https://health.ri.gov/water/about/pfas/

https://www.fdsoa.org/resourcepage (click on resources)

Updated September 2021.